
J
H
E
P
1
0
(
1
9
9
7
)
0
0
4

Received: September 15, 1997, Accepted: October 22, 1997
HYPER VERSION

Heterotic/type-I duality in D < 10 dimensions,

threshold corrections and D-instantons

Elias Kiritsis and Niels A. Obers
Theory Division, CERN CH-1211, Geneva 23, Switzerland

E-mail: kiritsis@mail.cern.ch, obers@mail.cern.ch
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We calculate the special (“BPS-saturated”) F4 and R4 terms in the effective one-loop

heterotic action. These terms are expected to be non-perturbatively exact for D > 4.

The heterotic result is compared with the associated type-I result. In D < 9 dimen-

sions, the type-I theory has instanton corrections due to D1 instantons. In D = 8 we

use heterotic/type-I duality to give a simple prescription of the D-instanton calculation

on the type-I side. We allow arbitrary Wilson lines and show that the D1-instanton de-

terminant is the affine character-valued elliptic genus evaluated at the induced complex

structure of the D1-brane world-volume. The instanton result has an expansion in terms

of Hecke operators that suggests an interpretation in terms of an SO(N) matrix model

of the D1-brane. The total result can be written in terms of generalized prepotentials,

revealing an underlying holomorphic structure. In D < 8 we calculate again the heterotic

perturbative thresholds and show that they agree with the D1-instanton calculation using

the rules derived in D = 8.
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1 Introduction and results

D-brane solitons and instantons are a key element of all non-perturbative duality conjec-

tures. While solitons have been studied vigorously, the attention paid to instantons has

been lesser and more recent: it includes work on the point-like D-instanton of type IIB [1]–

[7], on the resolution of the type-IIA conifold singularity by Euclidean 2-branes [8]–[10],

and on non-perturbative effects associated with Euclidean 5-branes [11]–[14]. Here we will

look at a simpler case, that of Euclidean D-strings present in type-I SO(32) string the-

ory: these are physically less interesting, since they are mapped by strong/weak-coupling

dualities to standard world-sheet instanton effects on the type-IIB, respectively heterotic

side. Our motivation is however different: we would like to gain a better understanding

of the rules of semi-classical D-instanton calculations, which could prove useful in more

interesting contexts. We will at the same time elucidate some subtleties of the above

duality maps, when applied below the critical dimension.

There have been many qualitative checks of various non-perturbative dualities, but

so far quantitative checks are scarce. In order to do a tractable quantitative test of a

non-perturbative duality we need to carefully choose the quantity to be computed. Since

usually a weak coupling computation has to be compared with a strong coupling one, one

has to choose a quantity whose strong coupling computation can also be done at weak cou-

pling. Such quantities are very special and generally turn out to be terms in the effective

action that obtain loop contributions from BPS states only. They are also special from

the supersymmetry point of view, since the dependence of their couplings on moduli must

satisfy certain holomorphicity or harmonicity conditions. Moreover, when supersymmetry

commutes with the loop expansion, they get perturbative corrections from a single or-

der in perturbation theory. Such terms also have special properties concerning instanton

corrections to their effective couplings. In particular, they obtain corrections only from

instantons that leave some part of the original supersymmetry unbroken. Sometimes,

such terms are directly linked to anomalies.

For ground states with N = 2 supersymmetry,1 the two-derivative terms in the ef-

fective action have the properties mentioned above. All the information about the two-

derivative effective action is contained in a prepotential which is holomorphic in the

vector-moduli, and another one which contains the hypermultiplet moduli. Moreover,

there is a tower of higher-derivative terms [15] that also have such special properties, and

their action can be written as an F-term. The simplest such bosonic term is the R2 term.

In the case of N = 4 supersymmetry, the two-derivative effective action does not

receive any corrections, either perturbative or non-perturbative. The higher-derivative

terms that have the special properties mentioned above are, among others, the four-

derivative F 4 and R2 terms, the six-derivative F 2R2 terms and the eight-derivative R4

terms [16].2 In this paper we will focus on such terms in vacua with N = 4 supersymmetry.

1We count the supersymmetries using four-dimensional language (in units of four supercharges).
2The analysis of [17] strongly indicates that there is also an infinite tower of such terms, as in the

N = 2 case, which are special.
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In [18] the relevant heterotic as well as some type-I one-loop thresholds were calculated.

In D = 9 no instanton corrections are expected and the two sides could be matched in

perturbation theory. The thresholds of the irreducible terms, trR4, trF 4 obtain only

one-loop contributions on both sides. Via the duality map, the heterotic result for the

factorizable terms (trF 2)2, (trR2)2, trF 2trR2 were shown to contain terms that come

from higher genus (χ = −1,−2) on the type-I side. These are contact (boundary) terms

on the type-I side and their appearance was motivated. Their presence is associated

with the (mild) non-holomorphicity of the elliptic genus on the heterotic side, while they

are related to the different structure of supersymmetry on the type-I side. World-sheet

contact terms are responsible for this non-holomorphicity on the heterotic side. It was

shown that the one-loop (non-contact) terms matched on both sides. This worked because

the winding sum in the heterotic side can be traded for unfolding the torus fundamental

domain to a strip, which is the relevant annulus fundamental domain on the type-I side.

It is crucial for this that no windings appear in the type-I theory. This is essentially the

old trick used in finite temperature string theory, which maps a case with windings and

a torus fundamental domain to a case without windings and an annulus domain.

The D = 8 case was further considered, where D1-brane instanton corrections are ex-

pected on the type-I side. The Wilson lines were set to zero and the heterotic thresholds

were calculated as functions of the two-torus moduli T , U . Using the heterotic/type-I

duality map, the heterotic result was separated into perturbative and non-perturbative

type-I parts. The perturbative part depends only on U and has a structure similar to

that in D = 9. The non-contact terms were again shown to agree with a one-loop calcu-

lation on the type-I side. The non-perturbative part was given an elegant interpretation

in terms of D1-brane instantons. The relevant configurations turn out to be a single Eu-

clidean D1-brane wrapped (holomorphically) in all possible ways around the two-torus.

Wrapped configurations related by large diffeomorphisms of the D1-brane world-sheet

should be considered equivalent and not be summed over. Multiple D1-branes at a non-

zero distance do not contribute, because of zero modes. However, configurations that

factorize into several independently wrapped (overlapping) D1-branes should also be in-

cluded. This is necessary for restoring the SL(2, Z)T T -duality symmetry. The necessity

of including independent wrapped D1-branes can be interpreted (in the Minkowski case)

as the presence of bound states at threshold.

By directly evaluating the classical D1-brane world-sheet action (which is known in-

dependently) the exponential terms e2πiT of the heterotic result were reproduced. Most

interestingly, the fluctuation determinant turned out to be, not unexpectedly, the het-

erotic elliptic genus evaluated at the complex structure modulus of the wrapped D1-brane.

In this paper we continue and generalize the analysis of [18]. In D = 8 we turn on

all possible moduli, the T, U torus moduli as well as the 16 complex Wilson lines, yi.

We again evaluate the heterotic perturbative thresholds for the gravitational terms trR4

and (trR2)2. The piece that is non-perturbative on the type-I side is shown to be given

again by D1-instantons. The fluctuation determinant is again holomorphic and is given

by the affine character-valued heterotic elliptic genus. We show that the full threshold
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correction can be written in terms of generalized holomorphic prepotentials indicating a

hitherto unknown holomorphic structure of these higher-derivative terms in the context

of D = 8, N = 1 supergravity. The existence of such prepotentials is shown to be

intimately related to the presence of the two-torus. Differential identities satisfied by the

torus lattice sum translate into existence conditions of prepotentials.

The instanton results can be expressed in terms of Hecke operators. As pointed out

in [19], it is in this form that they should be derivable from a D1-matrix model.

We further compactify both theories to D < 8. The heterotic threshold is perturbative

for D > 4. We evaluate it and subsequently show that it translates into perturbative

type-I contributions as well as D1-instanton corrections, where now the world-volume of

the D1-brane (with T 2 topology) is mapped supersymmetrically in all possible ways into

T 10−D. The one-loop determinant around the instanton is again given by the heterotic

elliptic genus evaluated at the induced complex structure on the world-volume of the

Euclidean D1-brane.

The structure of the paper is the following. In Section 2 we present some general

remarks on perturbative and non-perturbative corrections for the special terms in the

effective action in the presence of N = 4 spacetime supersymmetry. In Section 3 we

discuss the form of one-loop thresholds for the relevant R4 and F 4 terms and their relation

to the elliptic genus. In Section 4 we present the calculation of the D = 8 heterotic

thresholds, while these are further discussed in Section 5, along with supersymmetric

recursion relations and generalized prepotentials. The corresponding D1-brane instanton

interpretation on the type-I side is given in Section 6. The case with non-zero Wilson

lines and its D1-brane interpretation is given in Section 7. Section 8 discusses toroidal

compactifications of the heterotic string to lower dimensions and the corresponding D1-

brane interpretation. Finally, Section 9 contains further remarks and directions. In

Appendix A we present useful facts about modular forms and various modular covariant

derivatives. In Appendix B we give the duality map of heterotic/type-I duality in less

than ten dimensions. In Appendix C we outline the calculation of one-loop threshold

corrections for general heterotic N = 4 ground states. In Appendix D we list various

useful properties of the (2,2) lattice. In Appendix E we evaluate the integrals relevant for

the heterotic threshold calculation in D = 8. In Appendix F we derive the large volume

expansion of the heterotic thresholds. In Appendix G we discuss recursion relations

satisfied by heterotic thresholds and how these translate into the existence of generalized

prepotentials. Finally, in Appendix H we calculate the one-loop heterotic thresholds for

toroidal compactifications to D < 8.

2 The setup and some general remarks

The effective action for F 4, R4, and R2F 2 terms in an N = 4 theory can receive correc-

tions that are either perturbative or non-perturbative. Of course, the distinction between

perturbative and non-perturbative corrections depends on a given string theory one starts

with. Perturbative corrections in one description can contain non-perturbative contribu-
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tions when translated in a dual description in terms of a different string theory. When,

however, such terms obtain one-loop contributions in a given description, then these con-

tributions are proportional to a supertrace of the helicity to the fourth power3[16]. Since

the helicity supertraces are essentially indices to which only short BPS multiplets con-

tribute [16, 20], the one-loop contribution to such terms is due to BPS states only. The

appropriate helicity supertraces count essentially the numbers of “unpaired” BPS multi-

plets. It is only these that are protected from renormalization and can provide reliable

information in strong coupling regions.

In fact, calling the helicity supertraces indices is more than an analogy. In our con-

text, unpaired BPS states in lower dimensions are intimately connected with the chiral

asymmetry (conventional index) of the ten-dimensional theory. It is well known that the

ten-dimensional elliptic genus is the stringy generalization of the Dirac index [21, 22].

Projecting the elliptic genus on physical states in ten dimensions gives precisely the

massless states, responsible for anomalies. In lower dimensions, BPS states are deter-

mined uniquely by the elliptic genus, as well as the compact manifold data (in our case

the toroidal lattice sum). Moreover, the amplitudes that only have BPS contributions

are governed by the ten-dimensional elliptic genus and its covariant derivatives as will be

shown later on in this paper. It would be interesting to generalize in a model-independent

way the relationship of standard indices and helicity supertraces giving rise to the elliptic

genus.

For several four- or six-dimensional ground states with N = 2, 4 supersymmetry, there

is a trio of dual descriptions corresponding to a type-II, heterotic and type-I (open) de-

scription. In the type-II description the special terms described above seem to obtain

perturbative contributions from a single order in perturbation theory. This order is pro-

portional to the number of fields appearing in such a term if it belongs to the gravitational

sector. Moreover, these different loop-order contributions satisfy recursion relations [15].

In the heterotic description such terms seem to obtain perturbative contributions only

at one loop. Successful comparisons of such corrections have been made [24] between

heterotic/type-II N = 2 dual pairs.

The case of the type-I duals is more special. One of the reasons is that supersymmetry

in type-I theory does not “commute” with the genus expansion. This can easily be seen

by observing that, for example, the Green–Schwarz anomaly term B ∧ F 4 appears at

one loop while the CP-even term F 4 appears at the disk level. However, the two are

related by supersymmetry [25]. Since supersymmetry is essential in duality, we would

expect subtleties in comparing the type-I with the heterotic string past the tree level.

Already in [26] a comparison was made between N = 2 heterotic and type-I vacua in four

dimensions, using the techniques and results of [27]. It was shown that the duality map

has to be modified since on the type-I side there are one-loop corrections to the Einstein

term that modify the passage to the Einstein frame where dual theories are compared.

Moreover, similar comparisons in N = 2 ground states have been made for the higher

3In N = 2 ground states the supertrace of the helicity squared is obtained instead.
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F-terms [28]. In [18] it was shown that even for N = 4 ground states such subtleties arise

and have to be resolved.

On the heterotic side we consider compactifications of the ten-dimensional heterotic

string on a torus down to D < 10 non-compact dimensions. In heterotic perturbation

theory, the R2 term appears only at tree level and does not get further perturbative

corrections. To argue about non-perturbative corrections, we will have to identify the

appropriate instantons that could contribute. Since the R2 term is of a special kind,

only maximal supersymmetric instantons can contribute, and in the heterotic string this

is the Euclidean five-brane. In a toroidal compactification, an instanton correction from

the five-brane can arise if its six-dimensional Euclidean world-sheet can wrap (super-

symmetrically) around a compact six-torus. We would thus conclude that there are no

perturbative or non-perturbative corrections to the R2 term for D > 4. At D = 4 we

expect instanton corrections and these were calculated using heterotic/type-II duality in

[13, 14] although a direct five-brane calculation is still lacking.

The R4, R2F 2 and F 4 terms do get one-loop contributions. So far, we have been vague

concerning the tensor structure of such terms. Here, however, we will be more precise

[25, 29, 16]. There are three types of R4 terms in ten dimensions: t8(trR
2)2, t8trR

4

and (t8t8 − ε10ε10/8)R4, where t8 is the standard eight-index tensor [30] and ε10 is the

ten-dimensional totally antisymmetric ε symbol. The precise expressions can be found

for example in [29]. There are also the t8trR
2trF 2, t8trF

4 and t8(trF
2)2 terms. These

different structures can be completed in supersymmetric invariants [25, 29]. The bosonic

parts of these invariants are as follows:

J0 =

(
t8t8 −

1

8
ε10ε10

)
R4 , I1 = t8trF

4 −
1

4
ε10BtrF

4 (2.1a)

I2 = t8(trF
2)2 −

1

4
ε10B(trF 2)2 , I3 = t8trR

4 −
1

4
ε10BtrR

4 (2.1b)

I4 = t8(trR
2)2 −

1

4
ε10B(trR2)2 , I5 = t8(trR

2)(trF 2)−
1

4
ε10B(trR2)(trF 2) . (2.1c)

As is obvious from the above formulæ, apart from the J0 combination, the other four-

derivative terms are related to the Green–Schwarz anomaly by supersymmetry. Thus,

in ten dimensions, they are expected to receive corrections only at one loop if their

perturbative calculation is set up properly (in an Adler–Bardeen-like scheme). The J0

invariant is not protected by N = 4 supersymmetry. Heterotic/type-II duality in six

dimensions implies that it receives perturbative corrections beyond one loop. It is however

protected in the presence of N = 8 supersymmetry [5].

Here we would like to remind the reader of a few facts about heterotic perturbation

theory. There are many subtleties in calculating higher-loop contributions that arise from

the presence of supermoduli. There is no rigorous general setup so far, but several facts are

known. As discussed in [31] there are several prescriptions for handling the supermoduli.

They differ by total derivatives on moduli space. Such total derivatives can sometimes

obtain contributions from the boundaries of moduli space where the Riemann surface
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degenerates or vertex operator insertions collide. Thus, different prescriptions differ by

contact terms. In [32] it was shown that such ambiguities eventually reduce to tadpoles of

massless fields at lower orders in perturbation theory. The issue of supersymmetry is also

the subject of such ambiguities. It is claimed [31, 32] that in a class of prescriptions N ≥ 1

supersymmetry is respected genus by genus provided there are no disturbing tadpoles at

tree level and one loop. The only exception to this is the case of an anomalous U(1) in

N = 1 supersymmetric ground states. In this case there is a non-zero D-term at one loop,

which naively breaks supersymmetry. Restoration of supersymmetry implies the presence

of a two-loop contact term that was found by explicit calculation [33]. To conclude, if all

(multi) tadpoles vanish at one loop and we use the appropriate prescription for higher

loops, we expect supersymmetry to be valid order by order in perturbation theory. It is

to be remembered, however, that the above statements apply on-shell. Sometimes there

can be terms in the effective action that vanish on-shell, violate the standard lore above,

but are required by non-perturbative dualities. An example was given in [14].

We now turn again to the terms on which we focus in this paper, which occur in the

presence of N = 4 supersymmetry. The CP-odd terms in (2.1) were explicitly evaluated at

arbitrary order of perturbation theory in [34]. There, by carefully computing the surface

terms, it was shown that such contributions vanish for g > 1. The CP-even terms are

related to the CP-odd ones by supersymmetry (except for J0). If there are no subtleties

with supersymmetry at higher loops, then these terms also satisfy the non-renormalization

theorem. This was in fact conjectured in [34]. In view of our previous discussion on the

structure of supersymmetry, we would expect that once supersymmetry is working well

at g ≤ 1, it continues to work for g > 1 for a suitable definition of the higher-genus

amplitudes. In view of the above, we will assume that the CP-even terms do not get

contributions beyond one loop. On the other hand, the J0 term (which is non-zero at

tree level) is not protected by the anomaly. Thus, it can appear at various orders in the

perturbative expansion. It can be verified by direct calculation that it does not appear

at one loop on the heterotic side. However, heterotic/type-IIA duality in six dimensions

seems to imply that there is a two-loop contribution to this term on the heterotic side. In

all of the subsequent discussion, when we refer to R4 terms we mean the anomaly-related

tensor structures, I3, I4, which can always be distinguished from J0.

If we now compactify on a torus, although it seems that there might be no standard

anomalies in the lower-dimensional theory, this is misleading. Consider for example a

compactification on a circle to nine dimensions. There are no anomalies in nine dimen-

sions, as can be seen by a standard analysis of massless diagrams. In field theory, that

would be the end of the story. In string theory however things are a bit different. Con-

sider the original ten-dimensional gauge symmetry. From a nine-dimensional point of

view, we still have massless gauge bosons, but also an infinite tower of massive gauge

bosons (Kaluza–Klein modes and winding modes of the original gauge bosons). If we

consider how ten-dimensional gauge transformations act on the nine-dimensional gauge

bosons, we find that they are still the standard gauge transformations for the massless

nine-dimensional bosons, but they act as transformations of a broken gauge symmetry

7
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on the massive gauge bosons. Thus, the correct interpretation is that we are in a sponta-

neously broken phase of (part of) the ten-dimensional gauge symmetry. We know, on the

other hand, that a spontaneously broken gauge symmetry remembers very well poten-

tial anomalies visible in the unbroken phase. However, such anomalies would not come

from massless nine-dimensional diagrams. They would be visible when an infinite series

of nine-dimensional diagrams are included. The conclusion is that the anomaly-related

terms in ten dimensions are again anomaly-related in a lower dimension upon toroidal

compactification. The important question is: Are they still expected to get only one-loop

contributions in the lower-dimensional theory? This question cannot have a unique an-

swer, unless we specify some properties of the theory in question. In fact, as shown in

[18], the answer to this question is different for the two dual theories under consideration,

the heterotic and the type-I string.

In the heterotic theory, the answer is simpler. Following our discussion, the anomaly

CP-odd terms obtain perturbative contributions only at one loop, for any toroidal com-

pactification of the heterotic string. This can be calculated directly, since it requires

minor modifications of the calculation in [34]. For the CP-even supersymmetry-related

terms the answer is again expected to be the same and this is what we assume. Thus,

all perturbative corrections to the CP-even terms in Ii are expected to come only from

one loop for any D ≤ 10. As shown in [18], this is not the case in the type-I dual. We

have already observed that there, supersymmetry does not “commute” with the genus

expansion. The net result of this upon compactification is that there will be “contact”

contributions from higher genera.

In particular, among the terms we are investigating in this paper, there are the fac-

torizable ones (trR2)2, trR2trF 2, (trF 2)2 for which there are extra contributions from

surfaces with Euler number χ = −1,−2. The appearance of such extra contributions is

controlled on the heterotic side by world-sheet contact terms at one loop. Although we do

not know the detailed supersymmetry constraints for the terms in question for D < 10 we

can guess, by analogy with the N = 2 case, certain recursion relations between different

thresholds. Such recursion relation imply, in the type-I context, the presence of higher-

genus contact terms [18]. This situation is highly reminiscent of the anomalous U(1)

case in the heterotic string. This state of affairs also affects the type-I non-perturbative

contributions [18].

We will now consider potential non-perturbative contributions. The type of instan-

tons that could contribute is governed by supersymmetry and the fermionic structure

of super-invariants, which can be inferred from supergravity analysis. Two derivative

terms in the lowest-order effective action contain terms with up to four fermions. The

R2 invariant must contain terms with up to eight fermions. For the rest of the terms of

interest, we have: the super-invariants Ii, i = 1, 2, · · · , 5, must contain terms with up to

eight fermions, while J0 must contain terms with up to sixteen fermions. We are consid-

ering a class of theories that are invariant under a supersymmetry generated by sixteen

supercharges. In general, an instanton configuration will break part or all of the super-

symmetry. If it breaks all of the supersymmetry, there will be at least sixteen fermionic
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zero modes in the fluctuation spectrum around the instanton configuration. In general

the number of zero modes is determined by some appropriate index theorem. However,

the set will always contain at least a number equal to the number of supersymmetries

broken by the instanton. In multi-instanton solutions, there are in general more bosonic

moduli describing relative positions and orientation. If the multi-instanton leaves some

supersymmetry unbroken, there will be more fermionic zero modes, supersymmetric part-

ners of the bosonic moduli related by the unbroken supersymmetry. This is the reason

why for the terms we will be considering in this paper, instanton contributions will come

from configurations with a minimal number of instanton moduli.

The next question to be answered is: What part of the supersymmetry can an in-

stanton configuration break? The answer to this depends on the number of non-compact

dimensions. For D > 4 an instanton can break all or half of the supersymmetries. In

D = 4 breaking of 1/4 of the supersymmetries is also allowed.

Now, let us first consider multi-instanton configurations that break all supersymme-

tries. Then we have at least sixteen fermionic zero modes. Such configurations can give

non-zero contributions to terms in the effective action that contain terms with at least

sixteen fermions. From our last analysis, only J0 is in that class. Let us now consider

instantons that break half of the spacetime supersymmetries. In that case we have at

least eight zero modes and they can give non-trivial corrections to R2, as well as the

terms Ii. If we restrict ourselves to D > 4, we can ask the question whether there are

such instantons in the heterotic theory. The answer was already given in [35], and the

relevant instanton configuration is the heterotic five-brane. In order to interpret it as an

instanton, on the other hand, we would have to wrap its six-dimensional world-volume

around a compact six-dimensional manifold (so that the instanton action is finite). This

is obviously not possible for D > 4. The conclusion is that for D > 4, in the heterotic

theory, there are no non-perturbative corrections to the terms R2, Ii and of course to the

two-derivative terms. In D ≤ 4 we do expect non-perturbative corrections due to the

five-brane. In [36] it was argued that the instanton corrections to the F 4 terms are absent

in the globally supersymmetric case when D = 4 but are non-vanishing when D = 3.

This implies that in D = 4, the full stringy instanton result is zero or that it vanishes in

the limit that gravity is decoupled. The five-brane instanton calculation of F 4 terms in

D = 4 remains to be done.

In the type-I theory the situation is slightly different. The configurations that break

half of the supersymmetries are the D1-brane and the D5-brane. As in the heterotic case,

the D5-brane can only give instanton corrections when D < 5. The D1-brane has an

effective description as a soliton of the type-I effective theory [37] and also as a standard

D-brane [38]. In both descriptions, the spectrum of its zero modes reproduces the world-

sheet structure of the heterotic string. The D1-brane can produce instanton corrections

when D < 9. In that case, it can wrap around a two-cycle of T 10−D producing at least

eight fermionic zero modes. Multi-D1-brane instantons, if they are some distance apart

in target space, cannot contribute to the amplitudes in question since, according to our

previous discussion, they have more fermion zero modes and thus, do not contribute. This
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is in agreement with heterotic/type-I duality [18]. Thus, D1-branes will be responsible

for non-trivial instanton corrections to the higher-derivative terms, on the type-I side.

According to the above discussion, we do not expect instanton corrections on the

type-I side for D = 9. For 4 < D < 8 there will be instanton corrections due to the

D1-brane. These were computed for D = 8 in [18] for vanishing Wilson lines. In this

paper we will concern ourselves with D = 8 and arbitrary Wilson lines as well as with

4 < D < 8.

One final comment concerns a comparison between the instantons we are using here

and standard field-theory instantons. In field theory, we are usually considering two types

of instantons. The first are instantons with finite action, and a typical example is the

BPST instanton [39], present in non-Abelian four-dimensional gauge theories. Examples

of the other type are provided by the Euclidean Dirac monopole in three dimensions,

which is relevant, as shown in [40], to the understanding of the non-perturbative behaviour

of three-dimensional gauge theories in the Coulomb phase. This type of instanton has

an ultra-violet (short-distance)-divergent action, since it is a singular solution to the

Euclidean equations of motion. However, by cutting off this divergence and subsequent

renormalization, it can contribute to non-perturbative effects. Another famous case in

the same class is the two-dimensional vortex of the XY model, responsible for the KT

phase transition [41]. In four dimensions we also have the BCD merons [42], with similar

characteristics, although their role in the non-perturbative four-dimensional dynamics is

not very well understood.

Also in the context of string theory, we have these two types of instantons. Here, how-

ever, the behaviour seems to be somewhat different. Let us consider first the heterotic

five-brane [35]. This solution is intimately connected to BPST instantons in the transverse

space and is smooth provided the instanton size is non-zero. At zero size the solution has

an exact CFT description but the string coupling is strong. Non-perturbative effects are

important and a conjecture has been put forth to explain their nature [43]. Another type

of instanton whose effective field-theory description is regular is the D3-brane of type-IIB

theory. On the other hand, the other D-brane instantons have an effective description

that is of the singular type. However, their ultra-violet divergence is cured in their stringy

description. This is already clear in the case of the type-I D1-brane relevant for this paper,

where the effective description is singular [37] while the stringy description turns out to

be regular and in particular, as we will see later, their classical action is finite.

There seems to be a correspondence of the various field-theory instantons to stringy

ones. We have already mentioned the example of the heterotic five-brane, but the list

does not stop there. In [44] it was shown that the three-dimensional Polyakov QED

instanton as well as various non-Abelian merons have an exact CFT description and thus

correspond to exact classical solutions of string theory. Moreover, the three-dimensional

instanton can be interpreted as an avatar of the five-brane zero-size instanton when the

theory is compactified to three dimensions. Similar remarks apply to the stringy merons,

which require the presence of five-branes with fractional charge [44]. In that respect

they are solutions of the singular type in the effective field theory. In the context of
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the string theory, the spectrum of instanton configurations is of course richer, since the

theory includes gravity. However, the correspondence of field-theory and some string-

theory instantons implies that the field-theory non-perturbative phenomena associated

with them are already included in a suitable stringy description.

3 One-loop heterotic thresholds

In this section we review the calculation of BPS-saturated one-loop effective couplings in

heterotic string theory. These have the form [45, 46]

Ihet
D = −N (2π)d

∫
F

d2τ

τ 2
2

(τ2)
d/2Γd,d A(F ,R, τ) , (3.1)

where d = 10 − D is the number of compact dimensions, A is an (almost) holomorphic

modular form of weight zero related to the elliptic genus [21, 22] and F and R stand for

the gauge-field strength and curvature two-forms respectively. Γd,d is the lattice sum over

momentum and winding modes for d toroidally compactified dimensions, F is the usual

fundamental domain, and

N =
V (D)

210π6
(3.2)

is a normalization that includes the volume of the uncompactified dimensions [16]. For

simplicity, we first discuss here the case of vanishing Wilson lines on the d-hypertorus,

reinstating the Wilson line dependence further below. Then, the sum over momenta (p)

and windings (w) is given by

Γd,d =
∑
p,w

e−πτ2(p2+w2/π2)+iτ1p·w , (3.3)

and factorizes inside the integrand. Our conventions are

α′ = 1 , q = e2πiτ , d2τ = dτ1dτ2 , (3.4)

while winding and momentum are normalized so that p ∈ 1
R
Z and w ∈ 2πRZ for a

circle of radius R. The Lagrangian form of the above lattice sum, obtained by a Poisson

resummation, reads

Γd,d =
1

τ
d/2
2

√
detG

∑
mI ,nI∈Z

e
− π
τ2

P
I,J (G+B)IJ (mI+nIτ)(mJ+nJ τ̄)

(3.5)

with GIJ the metric and BIJ the (constant) antisymmetric-tensor background on the

compactification torus. For a circle of radius R the metric is G = R2.

The modular function A inside the integrand depends on the vacuum. It is quartic,

quadratic or linear in F and R, for vacua with maximal, half or a quarter of unbroken

supersymmetries. The corresponding amplitudes have the property of saturating exactly

the fermionic zero modes in a Green–Schwarz light-cone formalism, so that the contribu-

tion from left-moving oscillators cancels out [46]. In the covariant NSR formulation this
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same fact follows from ϑ-function identities. As a result A should have been holomorphic

in q, but the use of a modular-invariant regulator introduces some extra τ2-dependence

[46]. As described in more detail in Appendix C, A takes the generic form of a finite

polynomial in 1/τ2, with coefficients that have Laurent expansions with at most simple

poles in q,

A(F ,R, τ) =
νmax∑
ν=0

∞∑
n=−1

1

τ ν2
qn A(ν)

n (F ,R) . (3.6)

The poles in q come from the would-be tachyon. Since this is not charged under the gauge

group, the poles are only present in the purely gravitational terms of the effective action.

This can be verified explicitly in eq. (3.7) below. The 1/τ ν2 terms play an important role in

what follows. They come from corners of the moduli space where vertex operators, whose

fusion can produce a massless state, collide. Each pair of colliding operators contributes

one factor of 1/τ2. For maximally supersymmetric vacua, the effective action of interest

starts with terms having four external legs, so that νmax = 2. For vacua respecting half

the supersymmetries (N = 1 in six dimensions or N = 2 in four) the one-loop effective

action starts with terms having two external legs and thus νmax = 1.

Much of what we will say in the sequel depends only on the above generic properties

of A. It will apply in particular to the most often studied case of four-dimensional vacua

with N = 2. For definiteness we will, however, focus our attention on the toroidally

compactified SO(32) theory, for which [45, 46]

A(F ,R, τ) = t8 trF
4 +

1

27 · 32 · 5

E3
4

η24
t8 trR

4 +
1

29 · 32

Ê2
2E

2
4

η24
t8 (trR2)2

+
1

29 · 32

[E3
4

η24
+
Ê2

2E
2
4

η24
− 2

Ê2E4E6

η24
− 27 · 32

]
t8 (trF2)2

+
1

28 · 32

[Ê2E4E6

η24
−
Ê2

2E
2
4

η24

]
t8 trF

2trR2 .

(3.7)

Here t8 is the well-known tensor appearing in four-point amplitudes of the heterotic string

[30], and E2k are the Eisenstein series, which are (holomorphic for k > 1) modular forms

of weight 2k. Their explicit expressions are collected for convenience in Appendix A. The

second Eisenstein series Ê2 is special, in that it requires non-holomorphic regularization.

The entire non-holomorphicity of A in eq. (3.7), arises through this modified Eisenstein

series.

We will also give here the gravitational thresholds in the case of non-trivial Wilson

lines:

Ihet
D = −N (2π)d

∫
F

d2τ

τ 2
2

(τ2)
d/2Γd,d+16 Â(R, τ) , (3.8)

where

Â(R, τ) = t8
1

27 · 32 · 5

E4

η24
t8 trR

4 +
1

29 · 32

Ê2
2

η24
t8 (trR2)2 . (3.9)

An explicit form of the lattice sum in the Lagrangian representation is given by
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Γd+16,d(G,B, Y ) =

=

√
det G

τ
d/2
2

∑
mI ,nI∈Z

exp

[
−
π

τ2

(G+B)IJ(m
I + nIτ)(mJ + nJ τ̄)

]

×
1

2

1∑
a,b=0

16∏
i=1

e−iπ(mIY iI Y
i
Jn

J+b nIY iI ) ϑ
[
a+2nKY iK
b+2mKY iK

]
(0|τ) (3.10a)

=

√
det G

τ
d/2
2

∑
mI ,nI∈Z

exp

[
−
π

τ2
(G+B)IJ(m

I + nIτ)(mJ + nJ τ̄)

]

× exp

[
iπ
∑
i

nI
(
mJ + nJτ

)
Y i
I Y

i
J

]
1

2

1∑
a,b=0

16∏
i=1

ϑ[ab ](Y
i
K(mK + τnK)|τ) (3.10b)

where G,B are the constant metric and antisymmetric tensor and Y are the constant

Wilson lines.

In the toroidally compactified heterotic string, all one-loop on-shell amplitudes with

fewer than four external legs vanish identically [47]. This is not true for off-shell ampli-

tudes. In [14] it was shown that heterotic/type-II duality implies an antisymmetric tensor-

gravitational Chern–Simons CP-even coupling, which vanishes on shell. Consequently eq.

(3.1) directly gives the effective action, without having to subtract one-particle-reducible

diagrams, as is the case at tree level [48]. Notice also that this four-derivative effective

action has infrared divergences when more than one dimensions are compactified. Such

IR divergences can be regularized in a modular-invariant way with a curved background

[49, 50]. This should be kept in mind, even though for the sake of simplicity we will be

working in this paper with a simpler cutoff procedure to be specified later.

4 Two-torus compactification

The comparison of the two theories in perturbation theory for D = 9 was discussed in

detail in [18]. They agree at one loop. Moreover duality implies higher contact contri-

butions on the type-I side. It was argued in [18] that such contributions are required

by supersymmetry. Here, we will review the next simplest situation, corresponding to

compactification on a two-dimensional torus with zero Wilson lines, which was treated

in [18]. In this case, there are world-sheet instanton contributions on the heterotic side,

and our aim in this and the following sections will be to understand them as (Euclidean)

D1-brane contributions on the type-I side.

The target-space torus is characterized by two complex moduli, the Kähler-class

T = T1 + iT2 =
1

α′
(B89 + i

√
G) (4.1)

and the complex structure

U = U1 + iU2 = (G89 + i
√
G)/G88 , (4.2)
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where GIJ and BIJ are the σ-model metric and antisymmetric tensor on the heterotic

side. The one-loop thresholds now read

Ihet = −
V (8)

28π4

∫
F

d2τ

τ2
Γ2,2(T, U) A(F ,R, τ) , (4.3)

where the lattice sum takes the form [51]

Γ2,2(T, U) =
T2

τ2

∑
A∈Mat(2×2,Z)

e2πiTdetAe
−
πT2
τ2U2
|(1 U)A( τ

1
)|

2

. (4.4)

Following Dixon, Kaplunovsky and Louis [51], we decompose the set of all matrices A

into orbits of PSL(2, Z), which is the group of the above transformations up to an overall

sign. There are three types of orbits,

invariant : A = 0

degenerate : detA = 0, A 6= 0

non-degenerate : detA 6= 0

A canonical choice of representatives for the degenerate orbits is

A =

(
0 j

0 p

)
, (4.5)

where the integers j, p should not both vanish, but are otherwise arbitrary. Distinct

elements of a degenerate orbit are in one-to-one correspondence with the set of modular

transformations that map the fundamental domain on the strip. In what concerns the

non-degenerate orbits, a canonical choice of representatives is

±A =

(
k j

0 p

)
with 0 ≤ j < k , p 6= 0 . (4.6)

Distinct elements of a non-degenerate orbit are in one-to-one correspondence with the

fundamental domains of τ in the double cover of the upper-half complex plane.

Trading the sum over orbit elements for an extension of the integration region of τ ,

we can thus express eqs. (4.3), (4.4) as follows:

Ihet = −
V (8)T2

28π4
×

{∫
F

d2τ

τ 2
2

A +

∫
strip

d2τ

τ 2
2

∑
(j,p)6=(0,0)

e
−
πT2
τ2U2
|j+pU|

2

A+

+ 2

∫
C+

d2τ

τ 2
2

∑
0≤j<k
p6=0

e2πiTpk e
−
πT2
τ2U2
|kτ+j+pU|

2

A

}
≡ Ipert + Iinst. (4.7)

The three terms inside the curly brackets are constant, power-suppressed and exponen-

tially suppressed in the large compactification-volume limit. They correspond respectively

to tree-level, higher-perturbative and non-perturbative contributions on the type-I side.
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Substituting the form (3.6) of the elliptic genus in (4.7), we may write, for each of the

three contributions:

I = −
V (8)T2

28π4

νmax∑
ν=0

∞∑
n=−1

Iν,nA
(ν)
n (F ,R) , (4.8)

where the corresponding integrals Iν,n are computed in Appendix E and further rewritten

in Appendix F to exhibit the instanton expansion.

In particular, for the higher perturbative contributions we need

Ipert
ν =

∫ ∞
0

dτ2

τ 2+ν
2

∑
(j,p)6=(0,0)

e
−
πT2
τ2U2
|j+pU|

2

= ν!

(
U2

πT2

)ν+1 ∑
(j,p)6=(0,0)

|j + pU |−2(ν+1) . (4.9)

In the open-string channel of the type-I side, this properly takes into account the (dou-

ble) sum over Kaluza–Klein momenta [16]. Notice that the holomorphic anomalies in

A lead again to higher powers of the inverse volume, which translate to higher-genus

contributions on the type-I side. Notice also that the ν = 0 term has a logarithmic in-

frared divergence, which must be appropriately regularized. In all D = 8 calculations we

regularize the thresholds by removing the contribution from the massless states.

We now turn to the contributions of the world-sheet instantons, in which case we are

led to consider the integrals

I inst
ν,n = 2

∑
0≤j<k
p6=0

∫
C+

d2τ

τ 2
2

e2πiTpk e
−
πT2
τ2U2
|kτ+j+pU|

2 1

τ ν2
e2iπτn . (4.10)

To write the final result, we expand the elliptic genus as

A ≡ A0 =
νmax∑
ν=0

Êν
2 Φν(τ) (4.11)

and define the following relatives of the elliptic genus

As = Ds
τ

νmax∑
ν=s

(ν
s

)
Êν−s

2 Φν(τ) , (4.12)

where Dτ are the appropriate (non-holomorphic) covariant derivatives defined in Ap-

pendix A.1. In the next section we show that As is also an elliptic genus relevant to

thresholds involving the moduli. Then, we find the following expression for the instan-

tonic contributions

Iinst = −
V (8)

26π4
Re

νmax∑
s=0

(
3

2π

)s ∑
0≤j<k
p>0

1

(kp)s+1T s2
e2πiTpk As

(
pU + j

k

)
, (4.13)

which is one of the main results of Ref. [18]. In particular, it was shown there that this

form reproduces the sum of D1-instantons on the type-I side.
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Expression (4.13) has an elegant rewriting in terms of Hecke operators HN . On any

modular form Fd(z) of weight d, the action of a Hecke operator, defined by [52]

HN [Fd](z) =
1

N

∑
k,p>0
kp=N

∑
0≤j<k

pd Fd

(
pz + j

k

)
, (4.14)

gives another modular form of the same weight. The Hecke operator is self-adjoint with

respect to the inner product defined by integration of modular forms on a fundamental

domain. Using the definition (4.14) one finds

Iinst = −
V (8)

26π4
Re

νmax∑
s=0

(
3

2π

)s ∞∑
N=1

1

(NT2)s
e2πiNT HN [As](U) . (4.15)

As we will argue in the next section, this form of the instanton sum should be related to

a matrix-model interpretation of the D-instantons.

5 Further D = 8 thresholds, supersymmetric recursion relations

and generalized prepotentials

In this section we will further analyze one-loop threshold corrections to low-energy cou-

plings beyond the ones described up to now. We will show that elliptic genera As, with

s = 1, 2, that are defined in (4.12) and control the higher-genus corrections in (4.13) are

appearing in threshold corrections of other terms in the effective action. Such thresholds

are related via recursion relations to those of the F 4 and R4 terms. We will argue in

analogy with N = 2 supersymmetry in four dimensions that such relations are dictated

by supersymmetry.

We start by reminding the reader of an analogous situation in heterotic ground states

with four-dimensional N = 2 supersymmetry, which can be obtained from six-dimensional

ground states upon compactification on a two-torus. It was shown in [53] that the one-

loop Wilsonian threshold correction to the four-dimensional gauge couplings (for zero

Wilson lines) is almost universal and has the form

∆F 2

i =

∫
F

d2τ

τ2
[Γ2,2A0 − bi] =

∫
F

d2τ

τ2

[
Γ2,2

(
Φ1(τ)Ê2 + Φ0(τ)

)
− bi

]
, (5.1)

where

Φ1 = −
ki

12

E4E6

η24
, Φ0 =

ki

12
(j − 1008) + bi (5.2)

and i labels a non-Abelian factor of the gauge group. In particular, ki is the level of

the associated current algebra that determines the tree-level gauge coupling, bi is the β-

function of massless states and j is the modular-invariant. The expression (5.1) parallels

the threshold expressions studied in this paper.

On the other hand, there is a one-loop correction to the Kähler potential that governs

the kinetic terms of the two-torus moduli T, U . We will focus for simplicity on the kinetic
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terms of T . The Kähler metric has been calculated in [54, 53, 55], with the result

K
(1)

TT
=

1

T 2
2

∫
F

d2τ

τ 2
2

i

π
∂τ (τ2Γ2,2)

E4E6

12η24

=
1

kiT
2
2

∫
F

d2τ

τ2

Γ2,2DτΦ1 =
1

kiT
2
2

∫
F

d2τ

τ2

Γ2,2A1 , (5.3)

where A1 is the descendant of the F 2 elliptic genus. The two threshold corrections are

related as a consequence of supersymmetry [54]:

∂T∂T
∆F 2

i

ki
=

3

2
K

(1)

TT
+

bi

ki T
2
2

, (5.4)

which is valid away from enhanced symmetry points.4 That (5.1) and (5.3) satisfy (5.4)

can be shown as follows. The lattice sum satisfies the following identity:

T 2
2 ∂T∂T (τ2Γ2,2) = τ 2

2∂τ∂τ̄ (τ2Γ2,2) . (5.5)

Act on (5.1) using (5.5) and integrate twice by parts, then eq. (5.4) follows, where the

last constant terms come from the boundary and where one has to use the relation

A1 =
2

3
τ 2

2 ∂τ∂τ̄ A0 . (5.6)

In this relation, A1 would have been zero were it not for the non-holomorphicity of the

elliptic genus A0. To put it otherwise, the world-sheet contact terms responsible for the

non-holomorphicity of the elliptic genus are crucial for spacetime supersymmetry.

Similar arguments should be applicable to N = 4 supersymmetry in D = 8. Unfortu-

nately in this case the detailed structure of supersymmetry relevant for higher-derivative

terms is not known in detail. Our results for the thresholds on the heterotic side, presented

in Appendix G, strongly suggest that there is a structure similar to N = 2 supersymmetry

in four dimensions, and that several couplings can be written in terms of holomorphic

prepotentials. Despite this lack of knowledge, there is, as we will now show, a general-

ization of the structure we presented above for D = 4, N = 2 ground states, and similar

recursion relations exist as well. We conjecture that such recursion relations are due to

supersymmetry.

From now on we will specialize to the O(32) string compactified on a torus. Let

us consider first the one-loop correction of a four-derivative term involving the toroidal

moduli only. At tree level such a term is obtained from a dimensional reduction of the trR2

term, which does not receive loop corrections. As we shall see, the one-loop correction is

entirely due to world-sheet instantons. The torus moduli are GIJ , BIJ . We will use some

arbitrary basis φi for the moduli. The appropriate vertex operators for φi are

Vφi = viIJ∂X
I(∂̄XJ − ipµψ̄

µψ̄J)eip·X , (5.7)

4There are extra corrections there, see [56, 53].
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where

viIJ =
∂

∂φi
(GIJ +BIJ) . (5.8)

Doing the direct calculation of the torus amplitude, we obtain the following term in the

effective action5

Z ijkl(gµνgρσ − gµρgνσ + gµσgνρ)∂µφi∂νφj∂ρφk∂σφl (5.9)

where

Z ijkl = viI1J1
vjI2J2

vkI3J3
vlI4J4

(GI1I2GI3I4 −GI1I3GI2I4 +GI1I4GI2I3)IJ1J2J3J4 (5.10)

and

IJ1J2J3J4 =
√
G

∫
F

d2τ

τ 2
2

∑
mJ ,nJ

[
4∏
i=1

mJi + nJi τ̄

τ2

]
e
− π
τ2

(G+B)KL(mK+nKτ)(mL+nLτ̄)

(
E2

4

η24

)
.

(5.11)

Let us now focus on D = 8 where the lattice is two-dimensional and the relevant

moduli6 are T, U . Then, for the (∂T∂T̄ )2 we obtain, using (5.11), the relevant integral:

ZT 2T̄ 2

=
1

T 4
2

∫
F

d2τ

τ 2
2

D2(τ2Γ2,2)
E2

4

η24
=

1

T 4
2

∫
F

d2τ

τ2
Γ2,2 D

2

(
E2

4

η24

)
=

1

T 4
2

∫
F

d2τ

τ2
Γ2,2 A2

(5.12)

where, in the second step, we have integrated by parts twice. The boundary terms∫
F

d2τ ∂τ

[
1

τ 2
2

E2
4

η24
∂τ (τ2Γ2,2)− τ2Γ2,2

(
∂τ +

i

τ2

)(
1

τ 2
2

E2
4

η24

)]
(5.13)

can be verified to vanish and A2 is given in (4.12).

We also have terms of the form (∂φ)2trF 2 and (∂φ)2trR2. By direct calculation we

obtain the one-loop term of the form7

Z ij∂µφi∂νφjtr

(
F 2
µν −

1

4
gµνF

2

)
, (5.14)

where

Zij = viI1J1
vjI2J2

GI1I2IJ1J2
F , (5.15a)

IJ1J2
F = −

√
G

∫
F

d2τ

τ 2
2

∑
mJ ,nJ

[
2∏
i=1

mJi + nJi τ̄

τ2

]
×

×e−
π
τ2

(G+B)KL(mK+nKτ)(mL+nLτ̄)
tr

[
Q2 −

k

4πτ2

]
. (5.15b)

5We will not worry about overall, moduli-independent normalization of the thresholds.
6We set the Wilson lines to zero.
7Such threshold integrals were calculated in [55].
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In the O(32) case at hand

tr

[
Q2 −

k

4πτ2

]
=

1

12

Ê2E
2
4 −E4E6

η24
. (5.16)

A similar computation gives a term as in (5.14), with F → R and

IJ1J2
R = −

√
G

12

∫
F

d2τ

τ 2
2

∑
mJ ,nJ

[
2∏
i=1

mJi + nJi τ̄

τ2

]
×

×e−
π
τ2

(G+B)KL(mK+nKτ)(mL+nLτ̄)

(
Ê2E

2
4

η24

)
. (5.17)

Specializing to D = 8 we find that for the terms ∂T∂T̄ trR2 and ∂T∂T̄ trF 2 the

threshold correction is given by

ZT T̄F 2

= −
1

T 2
2

∫
F

d2τ

τ 2
2

i

π
∂τ (τ2Γ2,2)

Ê2E
2
4 − E4E6

12 η24

=
1

T 2
2

∫
F

d2τ

τ2

Γ2,2 D

(
Ê2E

2
4 −E4E6

12 η24

)
(5.18a)

ZT T̄R2

= −
1

T 2
2

∫
F

d2τ

τ 2
2

i

π
∂τ (τ2Γ2,2)

Ê2E
2
4

12 η24

=
1

T 2
2

∫
F

d2τ

τ2

Γ2,2 D

(
Ê2E

2
4

12 η24

)
. (5.18b)

The elliptic genera appearing in eqs. (5.18) are essentially A1 in (4.12) for the appropriate

terms.

We can now discuss recursion relations, which are supposed to hold because of super-

symmetry. We consider as a starting point the (trF 2)2 threshold

Z(F 2)2

=

∫
F

d2τ

τ2
Γ2,2A

(F 2)2

0 . (5.19)

It can be verified that the elliptic genus (4.11) and its relatives defined in (4.12) satisfy

the following recursion relation

As =
1

s!

(
2

3

)s
Ds(−iπτ 2

2 ∂τ̄ )
s A0 . (5.20)

By straightforward algebra, using the form of the covariant derivatives from Appendix A

(D = D−2, D
2 = D−2D−4 etc.), we find

A1 =
2

3
τ 2

2 ∂τ∂τ̄ A0 (5.21a)

A2 =
1

2

(
2

3

)2 [
(τ 2

2 ∂τ∂τ̄ )
2 −

1

2
τ 2

2 ∂τ∂τ̄

]
A0 . (5.21b)
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These are special cases of the relations (G.2) and (G.3).

Again we emphasize that these recursion relations are due to the non-holomorphicity

of the elliptic genus. Following the same procedure as in the N = 2 case we can derive

the following recursion relations

∂T∂TZ
(F 2)2

=
3

2
ZTT +

constant

T 2
2

(5.22a)

(
T 2

2 ∂T∂T −
1

2

)
(T 2

2Z
TTF 2

) = 3T 4
2 ZT 2T

2

+ constant′ . (5.22b)

The constants come from boundary terms. Similar recursion relations can be written

down for all the factorizable terms we are considering in the paper.

We believe that these relations are a consequence of supersymmetry, as in the N = 2

case. They only exist owing to the world-sheet contact terms in the heterotic result.

These contact terms imply a higher-genus contribution in the type-I side. It is natural

to conjecture that their presence in the type-I theory is due to the different realization of

supersymmetry.

Such recursion relations between elliptic genera and differential equations satisfied by

the (2,2) torus lattice sum imply the existence of prepotentials, generalizing the N = 2

situation in four dimensions.

We consider the following integrals

Ψs =

∫
F

d2τ

τ2
[Γ2,2(T, U)As − Cδs,0] , (5.23)

where s = 0, 1, 2, · · · , νmax and As are the relative elliptic genera. C is the coefficient of

the q0 term in A0. The IR is regulated by subtracting the contribution of the massless

states; Ψs is real.

The (2,2) lattice sum satisfies various differential identities summarized in Appendix

D. It is shown in Appendix G that, using such equations, the thresholds (5.23) can in

general be written as

Ψs = −Cδs,0 log(T2U2) +

νmax∑
ν=s

(ν + s)!

6s(ν − s)!s!
[Dν

TD
ν
Ufν(T, U) + cc] , (5.24)

where DT , DU are the appropriate covariant derivatives defined in Appendix A. The

functions fν depend holomorphically on the moduli T, U . They are prepotentials gen-

eralizing the usual case of N = 2 four-dimensional supersymmetry, which corresponds

to νmax = 1 [66, 55]. They transform as modular forms of weight −2ν in T and U , up

to additive pieces that are annihilated by the covariant derivatives. The full threshold

is duality-invariant. Explicit expressions of the prepotentials can be found in Appendix

E.2.
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6 D1-instanton interpretation

In the type-I theory a flat Euclidean D1-brane, wrapped around the target space two-

torus, provides us with a supersymmetric instanton that has maximal supersymmetry.

Since the Dirichlet boundary conditions are imposed in the eight spacetime dimensions,

this is a defect localized in spacetime and thus an instanton. Maximal supersymmetry

implies that the number of zero modes is minimal and we expect that it is the only such

instanton that would contribute corrections to the effective terms under consideration.

For example, an instanton contribution to trF 4 at χ = 0 should be generated by the

diagram depicted in Fig. 1. We will be guided in our computation of the instanton

corrections by the heterotic result (4.13).
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���
���
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���
���
���
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Figure 1: A D1-brane instanton correction to trF 4.

The Nambu–Goto world-sheet Euclidean action of the D1-brane is known [57] to be

SD1 =
1

2πα′

∫
d2σe−Φ/2

√
|detĜ| −

i

2πα′

∫
B , (6.1)

where Ĝ is the induced metric on the world-sheet

Ĝij = Gµν∂iX
µ∂jX

ν , (6.2)

Gµν is the type-I spacetime metric (σ-model frame), B is the type-I (RR) antisymmetric

tensor and the factor e−Φ/2 is due to the fact that the action comes from the disk. The

tension 1/2πα′ has been computed directly in [58].

We will now evaluate the classical action of the D1-brane wrapped around the target

space torus. Using Cartesian coordinates X1, X2 ∈ [0, 2π] for the target space torus and

σ1,2 ∈ [0, 2π] for the D1-brane, the σ-model type-I torus metric is

G =

√
detG

U2

(
1 U1

U1 |U |2

)
. (6.3)
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The complex structure U defines complex coordinates as usual

Z = X1 + UX2 , Z̄ = X1 + UX2 . (6.4)

The map that wraps the D1-brane world-sheet around the two-torus is(
X1

X2

)
=

(
n1 m1

n2 m2

)(
σ1

σ2

)
. (6.5)

To have a non-trivial wrapped configuration with the same orientation, n1m2−n2m1 > 0.

For n1m2 − n2m1 < 0, the orientation is reversed and the induced complex structure is

complex-conjugated. As we will see below, the first case corresponds to instantons, the

second to anti-instantons.

The complex structure of the original torus (6.4) induces a complex structure of the

D1-brane. Defining

z = σ1 + Uσ2 , z̄ = σ1 + Uσ2 (6.6)

the map from Z to z is holomorphic, Z = f(z). If the map changes the orientation, this

acts as complex conjugation on the complex structure. Using (6.4) and (6.5) we find that

Z = (n1 + Un2)

[
σ1 +

m1 + Um2

n1 + Un2
σ2

]
, (6.7)

which implies that the induced complex modulus is

U =
m1 + Um2

n1 + Un2

, n1m2 − n2m1 > 0 , ImU > 0 (6.8)

and

U =
m1 + Um2

n1 + Un2

, n1m2 − n2m1 < 0 , ImU > 0 . (6.9)

Modular transformations of the target-space torus act on X1, X2 by SL(2, Z) trans-

formations. From (6.5) we deduce that they also act on the matrix of “winding numbers”

by left SL(2, Z) transformations. Modular transformations on the D1-brane coordinates

σ1, σ2, act on the winding number matrix by right modular transformations. Configu-

rations are equivalent if they are related by SL(2, Z) transformations of the D1-brane

coordinates σi. The reason is that, since we are using the Nambu–Goto type action,

we have already “integrated out” the world-sheet metric. Thus, we can use the right

SL(2, Z) action to pick representative configurations with(
n1 m1

n2 m2

)
=

(
k j

0 p

)
, p > 0 , 0 ≤ j < |k| . (6.10)

For such configurations U = (pU + j)/k.

We can now evaluate the D1-brane classical action. Using (6.2), (6.5), (6.10) we find√
|detĜ| =

√
detG|pk| (6.11a)
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∫
BijdX

i ∧ dXj = pk B12 . (6.11b)

Denoting also λI = eΦ/2 we obtain

Sclass =
2π

α′

[
|pk|

√
detG

λI
− ipkB12

]
. (6.12)

As described in Appendix B the mapping between heterotic and type-I variables is

T1|het = T1|I , Uhet = UI and T2|het = T2

λ

∣∣
I
. We can express this in terms of heterotic

variables

T2|het =

√
detG

α′λI
, T1|het =

B12

α′
(6.13)

to obtain

e−Sclass = exp [−2π (|pk|T2 − ipkT1)] . (6.14)

When k > 0, we have instantons and

e−Sclass = e2πipkT , (6.15)

which is to be summed over k, p > 0, 0 ≤ j < k. For k < 0, we have anti-instantons and

e−Sclass = e−2πipkT , (6.16)

which is again to be summed over k, p > 0, 0 ≤ j < k. This precisely matches the

instanton expansion on the heterotic side in (4.13).

We now come to the issue of determinants. Since the D1-brane has the same world-

sheet structure as the heterotic string [38], we would expect that, up to volume factors,

the χ = 0 (one-loop) contribution to the determinant should be the heterotic elliptic

genus evaluated at the modulus of the wrapped D1-brane, τ → U . This is suggested by

the heterotic expansion (4.13) and is also natural on the type-I side. For anti-instantons,

τ → U . Finally, there is an overall factor of
√

detG/
√

detĜ, the ratio of volumes of the

target space torus to the D1-brane torus. This can be understood as follows. The inverse

of
√

detĜ is coming from the normalization of zero modes, while the
√

detG factor is the

standard volume factor of the target space torus.

This concludes the discussion for the trF 4 and trR4 terms. For the rest, there are extra

contributions coming from an instanton calculation for χ = −1,−2. The holomorphic

determinants here are related to the heterotic elliptic genus via (4.13) and are the relevant

quantities that appear in the calculation of the generalization of the Kähler potential in

the N = 4 case (see Section 5). Moreover, there is an extra overall factor of (detĜ)χ/2

related to zero modes. It would be interesting to directly understand the type-I calculation

of these terms.

One final comment is in order here. The world-sheet theory of N D1-branes is a gauge

theory with (8,0) supersymmetry in two dimensions. It has an SO(N) gauge group, eight

scalars that transform in the symmetric tensor of SO(N) and parametrize the relative
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distance moduli as well as another eight, which are SO(N) singlets and parametrize

the centre-of-mass position in transverse space. These are accompanied by left-moving

fermions coming from the DD Ramond sector. There are also DN fermions transforming

in the (N, 32) under SO(N) × SO(32). Thus, an SO(N) matrix theory describes the

dynamics of N D1-branes, [60]. As was observed in [19], in analogy with the type-II

case, we would expect that the IR limit is parametrized by separate coordinates of the N

D1-strings, with an orbifold identification when two of them coincide [61]. On the other

hand, it was shown in [62] that for symmetric CFTs the elliptic genus of an SN orbifold is

given by the action of a Hecke operator of order N on the original elliptic genus. Although

this was shown in the type-II context, it is also valid for heterotic orbifolds.

The above discussion provides an interpretation of eq. (4.15), which expresses the

instanton sum as a sum over Hecke operators acting on the elliptic genus. The N -th term

in the sum should come from N D1-brane instanton configurations. This interpretation

should be directly derivable from the appropriate matrix model [19].

7 D = 8 heterotic thresholds with non-zero Wilson lines

We will now include generic Wilson lines Y i
I , i = 1 . . . 16, I = 1, 2 which generically break

the gauge group to the Cartan, O(32)→ U(1)16. We define the following complex moduli

G =
(2T2U2 − ȳ2 · ȳ2)

2U2
2

(
1 U1

U1 |U |2

)
, B12 = T1 −

ȳ1 · ȳ2

2U2

(7.1a)

yi = (y1 + iy2)
i = −Y i

2 + UY i
1 (7.1b)

where we denote with ȳ the sixteen-dimensional complex vector of Wilson lines. Note

that the volume of the two-torus in this parametrization is

V ≡
√

detG = T2 −
ȳ2 · ȳ2

2U2
. (7.2)

We focus for simplicity on the gravitational one-loop thresholds given in (3.8) and

(3.9):

Ihet
D=8 = −N8

∫
F

d2τ

τ 2
2

(τ2Γ2,18(T, U, ȳ)) Â(R, τ) . (7.3)

The appropriate elliptic genus for a given term can be written as

Â =

νmax∑
ν=0

Êν
2 Φν(τ) , (7.4)

where νmax = 0 for trR4 and νmax = 2 for (trR2)2. Here Φν is a modular form of weight

−8 − 2ν and the explicit form of the relevant Φν ’s can be read from (3.9). The integral

can be done explicitly and the result can be expressed in terms of polylogarithms. This

is described in Appendix E. The trivial and degenerate orbits produce a result that is
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perturbative on the type-I side. The non-degenerate orbits give a result that is non-

perturbative on the type-I side. We are interested in the large volume expansion of the

non-degenerate orbit contribution. This is derived in Appendix F, and we will reproduce

it here. We introduce the O(32)1 affine lattice sum

χ(ȳ|τ) =
∑
r̄

eiπτ r̄·r̄e2iπr̄·ȳ =
1

2

1∑
a,b=0

16∏
i=1

ϑ[ab ](y
i|τ) (7.5)

where r̄ is a vector in the Spin(32)/Z2 lattice. The full affine character is given by χ

divided by η16. Under modular transformations

χ(ȳ + ε̄1 + τ ε̄2|τ) = e−iπ(τ ε̄2·ε̄2+2ε̄2·ȳ)χ(ȳ|τ) , χ(ȳ|τ + 1) = χ(ȳ|τ) (7.6a)

χ

(
ȳ

τ
| −

1

τ

)
= τ 8eiπ

ȳ·ȳ
τ χ(ȳ|τ) (7.6b)

where ε̄1,2 are lattice vectors. These transformations define a generalized Jacobi form of

type (d,m) = (8, 1). Properties of such forms are reviewed in Appendix A.2. We will

introduce also the covariant derivative on generalized Jacobi forms

D̃ = Dτ +
i

πτ2
ȳ2 · ∂ȳ −m

ȳ2 · ȳ2

τ 2
2

, (7.7)

which is such that D̃Fd,m is a Jacobi form of type (d + 2, m). Dτ is the usual covariant

derivative on weight d modular forms defined in Appendix A.1. We will now define the

relatives of the character-valued elliptic genus as

Âs(ȳ, τ) = D̃s

νmax∑
ν=s

(ν
s

)
χ(ȳ|τ)Êν−s

2 Φν(τ) , (7.8)

with Â0 = χ(ȳ|τ)Â(τ). Note that by setting the Wilson lines ȳ to zero (7.8) reduces to

(4.12). The non-degenerate orbit part of the threshold can be written as

Iinst = −4N8Re
νmax∑
s=0

(
3

2π

)s ∑
0≤j<k
p>0

1

(kp)s+1Vs
e2πiTpk Âs

(
pȳ,

pU + j

k

)
. (7.9)

which generalizes the zero Wilson-line result (4.13). It is also written as an expansion

in inverse powers of V, which is the volume of the two-torus (see eq. (7.2)). Using the

generalized Hecke operators VN [63] of Appendix A.3, the result can also be recast in the

following form:

Iinst = −4N8Re
νmax∑
s=0

(
3

2π

)s ∞∑
N=1

1

(NV)s
e2πiNTVN [Âs](ȳ|U) , (7.10)

which is the analogue of (4.15) obtained with zero Wilson lines.
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Before we proceed with the D1-instanton interpretation of the result, we should men-

tion that the thresholds in the presence of Wilson lines can also be written in terms of

generalized prepotentials. As shown in Appendix E.2, the generalization of (5.24) is

Ψs = −Cδs,0 log(T2U2 − ȳ2 · ȳ2/2) +
νmax∑
ν=s

(ν + s)!

6s(ν − s)!s!
[ νfν(T, U, ȳ) + cc] , (7.11)

where acting on a (d,m) Jacobi form is

=
1

2π2

(
∂ȳ · ∂ȳ − 2∂T∂U +

16− 2d

(ȳ2 · ȳ2 − 2T2U2)

[
d

2
+ i(ȳ2 · ∂ȳ + T2∂T + U2∂U)

])
. (7.12)

It reduces to DTDU in the absence of Wilson lines. More explicit forms for the generalized

prepotentials in this case are given in Appendix E.2.

We will now interpret the result in terms of the D1-brane. The coupling of the D1-

brane to bulk gauge fields is a one-loop effect given by the diagram in Fig. 1. Thus, the

coupling to Wilson lines is also a one-loop effect; consequently, it is independent of the

type-I dilaton. We can evaluate the induced Wilson lines on the D1-brane world-sheet as

w̄ = −W̄2 + UW̄1 = pȳ (7.13)

where we have used W̄i = Ȳα∂iX
α, U = (pU + j)/k and the map (6.5), (6.10). This

explains the dependence of the generalized elliptic genus in (7.9). Thus, part of the one-

loop determinant is the heterotic genus evaluated at the induced world-sheet modulus U

and the induced Wilson lines w̄.

The exponential factor exp[2πikpT ] is composed of two parts. Using (7.1) we find

that the first part is the same as was discussed in Section 6 and that it is generated

by the D1-brane classical action. There is a left-over piece depending on the Wilson

lines, which after some algebra can be written in terms of induced data as exp[iπ w̄·w̄2

U2
].

This is the Quillen anomaly of the one-loop determinant of the 32 world-sheet fermion

fluctuations of the D1-brane coupled to the induced Wilson lines w̄. There are also the

usual factors of volume, as in the case with zero Wilson lines. The terms in (7.9) with

s > 0 correspond to higher-loop contributions around the instanton, on the type-I side.

We conclude that the one-loop determinants around the D1-instanton are composed of

the heterotic elliptic genus evaluated at τ = U multiplied on the one hand by the O(32)

affine character evaluated at τ = U and at the induced Wilson lines ȳ → w̄ and also

multiplied by the anomaly factor of the world-sheet fermions. Again we sum over all

possible wrappings of the D1-brane, modded out by the world-sheet diffeomorphisms.

Since, here, we can also write the result in terms of the generalized Hecke operators

VN as in (7.10), it is this form that should correspond to the D1 matrix model with

non-trivial Wilson lines.

8 Heterotic thresholds in D < 8

We will now discuss heterotic thresholds in toroidal compactifications to D < 8. As we

argued earlier, ifD > 4 then the heterotic result is still one-loop only and can be evaluated.
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Using heterotic/type-I duality we find again the non-perturbative type-I corrections and

we show that their corresponding D1-brane interpretation is in agreement with the D1-

brane rules given in Section 6.

Our starting point is the general form of the one-loop thresholds

Ihet
D = −ND

∫
F

d2τ

τ 2
2

(τ
d/2
2 Γd,d(G,B)) A(τ) , (8.1)

where the D + d = 10 and the d-dimensional lattice sum Γd,d is given by

Γd,d(G,B) =

√
G

τ
d/2
2

∑
mi,ni∈Z

exp

[
−
π

τ2
(G+B)ij(m

i + niτ)(mj + nj τ̄)

]
, (8.2)

where G and B are the d-dimensional metric and antisymmetric tensor respectively. Al-

ternate forms of the lattice sum can be found in Appendix H.

The corresponding integral (8.1) can be evaluated again, using the method of orbits.

We refer to Appendix H for the main steps, and quote here only the result of the non-

degenerate orbit, which comprises the type-I instantonic contributions:

Iinst = −2ND

νmax∑
s=0

(
3

2π

)s∑
m,n

′
√
G

(Tm,n2 )s+1
e2πiTm,nAs(U

m,n) (8.3)

where we have used the definition (4.12) of the elliptic genera. Here, the induced Kähler

and complex structure moduli are given by

Tm,n = mBn+ i
√

(mGm)(nGn)− (mGn)2 (8.4a)

Um,n =
(
−mGn+ i

√
(mGm)(nGn)− (mGn)2

)
/nGn (8.4b)

and the
∑

m,n
′ is over the non-degenerate orbits, which are parametrized by the following

integer-valued 2× d matrices

non-degenerate orbit: AT =

(
n1 . . . nk 0 . . . 0

m1 . . . mk mk+1 . . . md

)
(8.5a)

1 ≤ k < d , nk > mk ≥ 0 , (mk+1, . . . , md) 6= (0, . . . , 0) . (8.5b)

Note that for d = 2 the general result (8.3) reduces to the one given in (4.13).

Turning to the D1-brane interpretation of the result, we first wish to establish that

the exponential factor e2πiTm,n agrees with the classical action of a D1-brane. The map

that describes the wrapping of the D1-brane world-sheet around a 2-cycle in the d-torus

is

X i = niσ1 +miσ2 , i = 1 . . . d , (8.6)

where X i are the coordinates on T d and σ1,2 the D1-brane coordinates. We observe that

modular transformations on the D1-brane coordinates act on the matrix A that enters

(8.6)

A =

n1 m1
...

...

nd md

 (8.7)
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by right SL(2, Z) transformations, which forces us to pick the representative configura-

tions described by the matrices in (8.5).

In terms of the matrix M i
I = (AIi )

T = (ni, mi), I = 1, 2, we see that the induced

metric and antisymmetric tensor fields are

ĜIJ = M i
IGijM

j
J , B̂IJ = M i

IBijM
j
J . (8.8)

In particular, going through the same steps as in Section 6, we find from the D1-brane

classical action (6.1) and (8.4), (8.8) that e−Sclass precisely reduces to the exponential factor

e2πiTm,n , which is to be summed over the ranges indicated in (8.5). We also note that

we correctly observe the overall factor
√
G/
√
Ĝ =

√
G/Tm,n2 . Moreover, the fluctuation

determinant is evaluated at the induced modulus Um,n of the wrapped D1-brane.

This establishes the claim that the D1-brane rules in D < 8 are consistent with those

obtained for D = 8. In summary, we have found the intuitively expected result that

the instantonic contributions consist of all possible inequivalent wrappings of the D1-

brane around two-tori that are embedded in the d-dimensional target space torus modulo

reparametrizations of the D1-brane world-sheet.

In the eight-dimensional case we have shown that differential equations satisfied by

the (2,2) toroidal lattice sum translate into recursion relations for the thresholds, which

can be solved in terms of holomorphic prepotentials. There is a generalization of such

equations for the (d, d) toroidal lattice sum.

It was noted in Refs. [49, 64] that the toroidal partition function Γd,d(G,B; τ) satisfies

the following differential equation:(∑
i≤j

Gij

∂

∂Gij

+
1− d

2

)2

+
1

2

∑
ijkl

GikGjl

∂2

∂Bij∂Bkl

−
1

4
− 4τ 2

2

∂2

∂τ∂τ̄

 τd/22 Γd,d(G,B; τ) = 0

(8.9)

which in the case d = 2 reduces to[
T 2

2 ∂T∂T̄ − τ
2
2 ∂τ∂τ̄

]
τ2Γ2,2(T, U ; τ) = 0 . (8.10)

However, the general differential equation in (8.9) is not invariant under the full O(d, d, Z)

duality group. It may be verified that it is invariant under integer B shifts and SL(d, Z)

basis changes, but there is no invariance under the remaining generators of the duality

group, which are the inversion and factorized duality. The latter two transformations act

on the matrix E ≡ G+B as follows:

E → E−1 , E → [(1− ei)E + ei][eiE + (1− ei)]
−1 , (ei)k,l = δikδil . (8.11)

For example, in the d = 2 case the factorized dualities correspond to T → U and T → 1/U

for i = 1 and 2 respectively, which do not leave the differential equation in (8.10) invariant.

This implies that there must be further constraints on Γd,d generalizing the d = 2

relation [
T 2

2 ∂T∂T̄ − U
2
2∂U∂Ū

]
Γ2,2(T, U ; τ) = 0 . (8.12)

28



J
H
E
P
1
0
(
1
9
9
7
)
0
0
4

To find the generalization of this relation we note that there is another O(d, d, Z) invariant

differential equation on the lattice sum, which reads[∑
ijkl

GikGjl

∂2

∂Eij∂Ekl
+
∑
ij

Gij

∂

∂Eij
+

1

4
d(d− 2)− 4τ 2

2 ∂τ∂τ̄

]
τ
d/2
2 Γd,d(E; τ) = 0 . (8.13)

As a consequence we find that the difference between (8.9) and (8.13) is the differential

equation,[∑
ijkl

(GijGkl −GjkGil)
∂2

∂Eij∂Ekl
+ (1− d)

∑
ij

Gij

∂

∂Eij

]
Γd,d(E; τ) = 0 , (8.14)

which, for d = 2, turns out to precisely reduce to (8.12). In fact, there is an entire family

of constraints[∑
ijkl

(PijPkl − PkjPil)
∂2

∂Eij∂Ekl
+
∑
ij

[(PG−1 − Tr(PG−1)1l)P ]ij
∂

∂Eij

]
Γd,d(E; τ) = 0 ,

(8.15)

which include (8.14) for P = G. Here P is an arbitrary matrix.

Clearly (8.14) and its generalization (8.15) are not invariant under the duality group,

since (as (8.9)) the inversion and factorized duality are broken, but these transformations

should be used to form a complete irreducible set of differential equations. For example,

under the inversion, we find that (8.15) with matrix P is transformed into the same

differential equation with matrix

P ′ = EP̃E , P̃ = P |E→E−1 . (8.16)

It is an open problem to find the general solution of such equations which will define

the analog of prepotentials in the lower dimensional case.

9 Conclusions and remarks

We have analyzed here heterotic/type-I duality in eight dimensions with arbitrary Wilson

lines as well as in D < 8 dimensions with zero Wilson lines.

We focused in particular on R4 terms in the effective action that obtain corrections

from short multiplets.

In eight dimensions, the heterotic result is one-loop only. However, non-perturbative

instanton corrections are necessary on the type-I side. We identified the relevant in-

stanton configurations with a D1-brane wrapped around the compact two-torus. The

heterotic result implies a concrete way to count different instanton configurations. Mul-

tiple overlapping D1-branes have to be included, however, in order to restore T -duality.

Moreover, we have to sum over D1-branes wrapped in any possible way around T 2 modulo

the modular transformations of the D1-world-volume. Most interestingly, the fluctuation
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determinant around a given D1-instanton configuration is given by the heterotic ellip-

tic genus evaluated at the complex structure modulus induced on the world-sheet of the

wrapped D1-brane. The instanton result can be written in terms of Hecke operators.

In this form it provides a potentially interesting link with a SO(N) matrix model of

D1-branes. Finally, we have shown that the thresholds can be expressed in terms of

generalized holomorphic prepotentials.

We have also considered the heterotic perturbative thresholds in D = 8 in the presence

of arbitrary Wilson lines. We have calculated exactly the one-loop perturbative contri-

bution. In this case, heterotic/type-I duality predicts that the D1-instanton determinant

is the affine character-valued genus evaluated at the induced complex structure of the

D1-brane world-volume and the induced Wilson lines on this world-sheet. Moreover, we

found the exponential factors to be in agreement with the classical D1-brane action as

well as the Quillen anomaly of the 32 fermions.

Finally, we have discussed the heterotic perturbative thresholds in toroidal compacti-

fications to D < 8. In this case, again using heterotic/type-I duality, we find agreement

with the D1-brane rules obtained from D = 8. In particular, we observe all possible

wrappings of the D1-brane around the various two-tori that are embedded in the d-torus.

Moreover, the exponential factor corresponding to the classical action as well as the fluc-

tuation determinants are in agreement with the D = 8 result as well.

There are several questions, however, that remain open. An essential quantitative test

of heterotic/type-I duality can be obtained by directly calculating relevant higher-genus

terms on the type-I side. Already in ten dimensions, the χ = −1, (trF 2 − trR2)2 term

should match the corresponding tree-level term on the heterotic side. In D < 10, further

higher-genus contact terms, corresponding to one-loop world-sheet contact terms on the

heterotic side, should be checked. This state of affairs in duality comparisons is not new.

Similar situations arise in N = 2 heterotic/type-II dual pairs with N = 2 supersymmetry,

and heterotic/type-I dual pairs with N = 2 supersymmetry.

At the effective supergravity level, knowledge of the holomorphic (D = 8) or quater-

nionic (D = 6) structure of the special derivative terms is missing. An analogue of the

higher F-terms of N = 2 supersymmetry should exist for N = 4 supersymmetry. The

expressions that we have obtained in Appendix E.2 for the heterotic thresholds in terms

of generalized prepotentials are very suggestive in this respect.

Since our results on the heterotic side are supposed to be non-perturbatively exact for

D > 4, a direct quantitative check could be made of the conjectured F-theory/heterotic

duality in eight dimensions [59]. Techniques however are necessary on the F-theory side

to calculate the relevant amplitudes.

The heterotic result can provide a (missing) quantitative test of string–string duality

in six dimensions. The type-IIA theory compactified on K3 down to six dimensions

is conjectured to be equivalent to the heterotic string compactified on T 4. As in the

heterotic case, we do not expect non-perturbative corrections either on the type-II side

for the F 4, R4, R2F 2 terms. This can be seen as follows: the relevant Dp-branes of

the ten-dimensional IIA theory have p = 0, 2, 4, 6, 8 with world-sheets being 1, 3, 5, 7, 9-
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dimensional. To obtain an instanton contribution we need appropriate supersymmetric

cycles onK3 with dimension belonging to the list above. It is known that there are no such

cycles. Moreover, we also have the five-brane, which is magnetically coupled to the NS-NS

antisymmetric tensor. Since its world-sheet is six-dimensional it can only give instanton

corrections in D < 5 dimensions. Thus, in D = 6, heterotic/type-II duality can be tested

for the special terms in perturbation theory. Preliminary investigation suggests that the

relevant objects on the type-II side are the N = 4 topological amplitudes defined in [17].

Preliminary investigation shows that for example the tree-level F 4 terms on the type-II

side match the one-loop corrections to such terms on the heterotic side as required by

duality. We can further compactify both theories on a circle to five dimensions. There are

still no non-perturbative corrections on the heterotic side. In the type-II theory, we expect

instanton corrections from the D2- and D4-branes, which are electrically (magnetically)

charged under the 3-form. The D2-brane can wrap around S1 and a supersymmetric two-

cycle of K3. The D4-brane can wrap on S1 and the whole of K3. These non-perturbative

type-II corrections are expected to reproduce the heterotic cross-terms coupling the (4,4)

and the (1,1) lattice. A more thorough investigation is needed, however.

Finally, although we do think that we understand the conceptual rules of instan-

ton calculations in string theory, there are several issues that remain to be answered

in this respect. A direct D-brane calculation of the D1-instanton determinant should

be done. Such techniques are also of importance for five-brane instanton calculations in

four-dimensional ground states. Knowing how to do this calculation for the D5-brane will

provide, via various dualities, the rules for NS5-brane instantons in heterotic and type-II

string theory.
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A Modular functions

A.1 SL(2, Z) modular functions and covariant derivatives

We list in this appendix the ϑ-function definitions we use, and those associated with

modular forms. We also discuss modular-covariant derivatives and a number of identities

involving these.

Our conventions for the ϑ-function are

ϑ[ab ](v|τ) =
∑
p∈Z

eπiτ(p−
a
2 )

2
+2πi(v− b2)(p−

a
2 ) , (A.1)
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so that the Jacobi ϑ-functions are given by

ϑ1 = ϑ[11] , ϑ2 = ϑ[10] , ϑ3 = ϑ[00] , ϑ4 = ϑ[01] , (A.2)

and the Dedekind function is

η(τ) = q1/24
∞∏
n=1

(1− qn) , (A.3)

where q = e2iπτ .

Holomorphic modular forms Fd(τ) of weight d transform under the modular group as

Fd(τ + 1) = Fd(τ) , Fd(−1/τ) = τd Fd(τ) . (A.4)

A set of modular forms, relevant for our purposes, are the Eisenstein series

E2k = −
(2k)!

(2πi)2kB2k
G2k , (A.5)

with B2k the Bernoulli numbers and

G2k(τ) =
∑

(m,n)6=0

(mτ + n)−2k (A.6)

for k > 1. For k = 1 the Eisenstein series diverges. Its modular-invariant regularization,

denoted with a hat and used in this paper, is

Ĝ2(τ) = lim
s→0

∑
(m,n)6=0

(mτ + n)−2|mτ + n|−s . (A.7)

The (hatted) Eisenstein series are modular forms of weight 2k. The ring of holomorphic

modular forms is generated by E4 and E6. If we include (non-holomorphic) covariant

derivatives (to be discussed below) then the generators of this ring are Ê2, E4, E6.

Expressed as power series in q, the first few of the Eisenstein series are

E2(q) =
12

iπ
∂τ log η = 1− 24

∞∑
n=1

n qn

1− qn
(A.8a)

E4(q) =
1

2

(
ϑ8

2 + ϑ8
3 + ϑ8

4

)
= 1 + 240

∞∑
n=1

n3qn

1− qn
(A.8b)

E6(q) =
1

2

(
ϑ4

2 + ϑ4
3

) (
ϑ4

3 + ϑ4
4

) (
ϑ4

4 − ϑ
4
2

)
= 1− 504

∞∑
n=1

n5qn

1− qn
. (A.8c)

The modified first Eisenstein series is

Ê2 = E2 −
3

πτ2
. (A.9)
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We can write the (weight 12) cusp form η24 and the modular-invariant j-function in terms

of E4 and E6

η24 =
1

26 · 33

[
E3

4 − E
2
6

]
, j =

E3
4

η24
=

1

q
+ 744 +O(q) . (A.10)

There is a (non-holomorphic) covariant derivative that maps modular forms of weight

d to forms of weight d+ 2, defined as

Fd+2 =

(
i

π
∂τ +

d/2

πτ2

)
Fd = −2

(
q∂q −

d

4πτ2

)
Fd ≡ Dd Fd . (A.11)

The covariant derivative satisfies the distributive property

Dd1+d2 (Fd1 Fd2) = Fd2(Dd1Fd1) + Fd1(Dd2Fd2) . (A.12)

We will suppress the index d from the covariant derivative and write multiple derivatives

as Dn. For example a double derivative on a weight d form is

D2Fd ≡

(
i

π
∂τ +

(d+ 2)/2

πτ2

)(
i

π
∂τ +

d/2

πτ2

)
Fd . (A.13)

The following formulæ allow the computation of the covariant derivative of any form:

D Ê2 =
1

6
E4 −

1

6
Ê2

2 , D E4 =
2

3
E6 −

2

3
Ê2 E4 (A.14a)

D E6 = E2
4 − Ê2 E6 . (A.14b)

There is also a holomorphic covariant derivative on forms of weight d: the quantity

Fd+2 =

(
i

π
∂τ +

d

6
E2

)
Fd ≡ D̂d Fd (A.15)

is a modular form of weight d + 2. It satisfies a distributive property similar to that in

(A.12). For the difference between the two covariant derivatives, we obtain:

D̂d −Dd =
d

6
Ê2 . (A.16)

We also list a number of identities involving modular forms and covariant derivatives,

which are used in Appendices E and F. In these expressions the quantity Ds always

stands for D−2D−4 · · ·D−2s.

1) Expansion formula

(DsÊν−s
2 Φν)(τ) =

s∑
r=0

ν−s∑
m=0

aν,sr,m
1

(πτ2)s+m−r
(q∂q)

rEν−s−m
2 Φν(τ) (A.17a)

aν,sr,m = (−1)s+m
3m4r

2s
s!

r!

(
ν − s

m

)(
2s+m− r

s+m

)
(A.17b)

0 ≤ s ≤ ν , 0 ≤ r ≤ s , 0 ≤ m ≤ ν − s
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Two useful special cases are

ReDsiτ 2s+1 = −
(−2)ss!

πs
τ s+1

2 , Ds1 =
(2s)!

(−2)ss!πs
1

τ s2
. (A.18)

2) A special function and its derivatives. The following combined polylogarithm functions

L(s) play a very special role in the modular-invariant integrals of Appendix E. Their

definition is

L(s)(x) ≡
s∑
r=0

(s+ r)!

r!(s− r)!(4π)r
(Im x)s−rLis+r+1(e

2πix) , (A.19)

where

Lis(x) =
∞∑
p=1

1

ps
xp (A.20)

are the polylogarithm functions. They satisfy the interesting relations

Ds
UD

s
TLi2s+1(q

k
T q

l
U) =

s∑
m=0

(s+m)!

m!(s−m)!
(4kl)s−m

L(m)(Tk + Ul)

(πT2U2)m
(A.21)

and their inversion

L(s)(Tk + Ul)

(πT2U2)s
=

s∑
m=0

s!

(s−m)!

2m+ 1

(s+m+ 1)!
(−4kl)s−mDm

UD
m
T Li2m+1(q

k
T q

l
U) . (A.22)

A.2 Generalized Jacobi forms and covariant derivatives

We give in this appendix a generalization of Jacobi forms [63] and their associated

modular-covariant derivatives, and give various properties and application to characters.

We define a generalized Jacobi form of type (d,m)8 to be a holomorphic function

Fd,m(yi|τ) (i = 1 . . . S) with the following transformation properties

Fd,m(yi + εi|τ) = Fd,m(yi|τ) (A.23a)

Fd,m(yi + τεi|τ) = e−iπm(τε·ε+2ε·y)Fd,m(yi|τ) (A.23b)

Fd,m(yi|τ + 1) = Fd,m(yi|τ) (A.23c)

Fd,m(yi/τ | − 1/τ) = τd eiπmy·y/τFd,m(yi|τ) , (A.23d)

where εi is a vector in the lattice ΓS,0. For our purposes, this will generally be one of the

even self-dual Euclidean lattices, which are the E8 root lattice with S = 8 or the root

lattice of E8 × E8 or weight lattice of Spin(32)/Z2 with S = 16.

Then it can be explicitly verified that there exists the following non-holomorphic

covariant derivative

D̃ = Dτ +
i

πτ2

ȳ2 · ∂ȳ −m
ȳ2 · ȳ2

τ 2
2

, (A.24)

8The number d is also called the weight and m the index.
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which is such that D̃Fd,m is a Jacobi form of type (d + 2, m). Here Dτ is the usual

SL(2, Z) covariant derivative (A.11) on a weight d modular function, and ȳ2 stands for

the imaginary part of the S-dimensional vector ȳ. The inner product on this space is

taken with the metric η(S) on ΓS,0.

The generators of O(S + 2, 2, Z) transformations are

U → U + 1 , T → T , ȳ → ȳ (A.25a)

U → −1/U , T → T −
ȳ · ȳ

2U
, ȳ → ȳ/U (A.25b)

U → U , T → T + ε̄ · ȳ +
1

2
ε̄2U , ȳ → ȳ + ε̄U (A.25c)

U → U , T → T , ȳ → ȳ + ε̄ (A.25d)

U → T , T → U , ȳ → ȳ (A.25e)

U → U , T → T + 1 , ȳ → ȳ (A.25f)

U → U −
ȳ · ȳ

2T
, T → −1/T , ȳ → ȳ/T . (A.25g)

Note that the first four of these transformations, which leave the variable V = T2 −
ȳ2ȳ2

2U2

invariant, are the ones used in (A.23) (ignoring T ). A function Fd(ȳ, T, U) is of weight

d in both T and U if it transforms with a factor Ud and T d under the transformations

(A.25b) and (A.25g) respectively, and is invariant under the remaining transformations

in (A.25).

We introduce the following notation for the O(S + 2, 2) moduli:

ya = (yi, y+, y−) = (ȳ, T, U) , ηab =

(
ηij(S) 0

0 −η(2)

)
, η(2) =

(
0 1

1 0

)
, (A.26)

where η(S) is the metric on the lattice, generally taken to be unity. Inner products on this

(S + 2)-dimensional space are taken with the above metric and denoted by (, ) so that,

for example,

(y2, y2) = ȳ2 · ȳ2 − 2T2U2 . (A.27)

On the space of O(S + 2, 2, Z) covariant functions, we define the following operator

d =
1

2π2

(
ηab∂ya∂yb +

S − 2d

(y2, y2)

[
d

2
+ iya2∂ya

])
, (A.28)

which satisfies the property that when F(d)(ȳ, T, U) is a function of weight d in T and U ,

then the function F(d)(ȳ, T, U) is of weight d + 2 in both T and U . Also note that for

ȳ = 0, S = 0 the operator reduces to the double covariant derivative DUDT .

We also recall the definition of character and affine character lattice sums

χ(τ) =
∑
r̄

qr̄·r̄/2 , χ(ȳ|τ) =
∑
r̄

qr̄·r̄/2e2πir̄·ȳ (A.29)
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where r̄ runs over the appropriate lattice. For example, when r̄ ∈ ΓS,0, we have for the

two relevant cases, S = 8 and S = 16, the affine character lattice sums

χE8(ȳ|τ) =
1

2

1∑
a,b=0

8∏
i=1

θ[ab ](y
i|τ) (A.30a)

χE8×E8(ȳ|τ) =
1

2

1∑
a,b=0

8∏
i=1

θ[ab ](y
i
(1)|τ)

1

2

∑
a,b

8∏
i=1

θ[ab ](y
i
(2)|τ) (A.30b)

χS0(32)(ȳ|q) =
1

2

1∑
a,b=0

16∏
i=1

θ[ab ](y
i|τ) . (A.30c)

Comparison of the transformation properties of these affine character lattice sums and

(A.23) shows that that they are in fact Jacobi forms of weight (S/2, 1). The full affine

characters are obtained from the lattice sums by dividing by ηS.

Some identities satisfied by the operators D̃ and are given below. All of these

expressions have been explicitly checked for s ≤ 2, which covers the cases needed for this

paper. We conjecture, however, that they are valid generally, and as a non-trivial check

one may verify that they correctly reduce to the identities given in (A.21), (A.22) for

S = 0. Below, the quantities D̃s stand for D̃−2D̃−4 · · · D̃−2s and similarly for s.

1) Expansion formula

(D̃sÊν−s
2 χ(ȳ)Φν)(τ) =

s∑
r=0

ν−s∑
m=0

r∑
p=0

s−r∑
n=0

αν,sr,m,p,n
1

(πτ2)s+m−r+p+n
× (A.31a)

×
∑
r̄

(π2ȳ2 · ȳ2)
n(πr̄ · ȳ2)

p[q∂q]
r−pq

1
2
r̄·r̄e2πir̄·ȳ(Eν−s

2 Φν)(τ)

αν,sr,m,p,n = (−1)s+m
3m4r2n

2s
s!

r!n!

(
ν − s

m

)(
2s+m− r − n

s+m

)(
r

p

)
(A.31b)

0 ≤ s ≤ ν , 0 ≤ r ≤ s , 0 ≤ m ≤ ν − s , 0 ≤ p ≤ r , 0 ≤ n ≤ s− r

where χ(ȳ|τ) is the affine character (A.29) of weight (S/2, 1).

2) Covariant derivatives of special functions. The combined polylogarithm function de-

fined in (A.19) also satisfies

sLi2s+1(e
2πi(r,y)) =

s∑
m=0

( s
m

) (S/2 + s+m)!

(S/2 + s)!
(−2)s(r2)s−m

L(m)((r, y))

(π(y2, y2))m
, (A.32)

where r = (r̄,−l,−k) so that (r, y) = r̄ · ȳ + Tk + Ul and r2 = r̄ · r̄− 2kl. The inverse of

this relation is

L(s)((r, y))

(π(y2, y2))s
=

s∑
m=0

( s
m

) (S/2 +m)!(S/2 + 2m+ 1)

(S/2 + s+m+ 1)!

(−1)s

2m
(r2)s−m mLi2m+1(e

2πi(r,y)) .

(A.33)
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We also have the following identity

Re sid(s)
a1...a2s+1

ya1 · · · ya2s+1 =

=−
1

(2π2)s

s∑
m=0

( s
m

) (S/2 + s+m)!

(S/2 + s)!

(−4)mm!(2s+ 1)!

(2m+ 1)!

d
(m)
a1...a2m+1

(y2, y2)m
ya1

2 · · · y
a2m+1

2 (A.34)

where the tensors d(m) are totally symmetric and recursively defined from d(s) by

d(m−1)
a1...a2m−1

= d(m)
a1...a2m+1

ηa2ma2m+1 , 1 ≤ m ≤ s . (A.35)

The inverse relation reads

d
(s)
a1...a2s+1

(y2, y2)s
ya1

2 · · · y
a2s+1

2 = −
s∑

m=0

( s
m

) (S/2 +m)!(S/2 + 2m+ 1)

(S/2 + s+m+ 1)!

(−2π2)m(2s+ 1)!

4ss!(2m+ 1)!
×

×Re sd(m)
a1...a2m+1

ya1 · · · ya2m+1 . (A.36)

We finally note the relation

s1 =
(−1)s

2sπ2s

(S/2 + 2s)!

(S/2 + s)!

(2s)!

s!

1

(y2, y2)s
. (A.37)

A.3 Hecke operators

Consider a Jacobi form as defined in (A.23). Let Jd,m be the space of Jacobi forms of

type (d,m). We will define the following operators [63]

VN [Fd,m](yi|τ) =
1

N

∑
k,p>0
kp=N

∑
0≤j<k

pdFd,m

(
pyi |

pτ + j

k

)
(A.38a)

UN [Fd,m](yi|τ) = Fd,m(N yi|τ) (A.38b)

UN : Jd,m → Jd,mN2 , VN : Jd,m → Jd,mN (A.38c)

UN · UM = UMN , VM · VN = VN · VM =
∑

D|(M,N)

Dd−1 UD · VMN/D2 . (A.38d)

where D in (A.38d) runs over the common divisors of (M,N). The operator VN is the

generalization of the Hecke operator HN given in (4.14) and one may check that VN [Fd,m]

gives a Jacobi form of type (d,mN).

B Heterotic/type-I duality in D < 10 dimensions

In this appendix we will derive the heterotic/type-I duality map once we have compactified

both theories on a torus to D < 10 dimensions.
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The heterotic string action in D dimensions is

Shet
D =

∫
dDx
√
−ge−φ

[
R + (∂φ)2 −

1

12
Ĥ2 −

1

4
(M−1)IJF

I
µνF

Jµν +
1

8
Tr(∂µM∂µM−1)

]
(B.1)

where

Ĥµνρ = ∂µBνρ −
1

2
AIµLIJF

J
νρ + cyclic . (B.2)

The (2d+ 16)× (2d+ 16) moduli matrix MIJ is

M =

 G−1 −G−1C −G−1Y t

−CtG−1 G+ CtG−1C + Y tY CtG−1Y t + Y t

−Y G−1 Y G−1C + Y 1 + Y G−1Y t

 , (B.3)

written in terms of the metric Gαβ of the d-torus (d = 10−D), the antisymmetric tensor

Bαβ , and gauge moduli Y i
α with

Cαβ = Bαβ −
1

2
Y i
αY

i
β , (B.4)

with α, β = 1, 2, · · · , d and i = 1, 2, · · · , 16:

L =

 0 1d 0

1d 0 0

0 0 116

 . (B.5)

Going to the Einstein frame we obtain

Shet
D,E =

∫
√
−gE

[
R−

1

D − 2
∂µφ∂µφ−

e
−4φ
D−2

12
ĤµνρĤµνρ −

−
e
−2φ
D−2

4
(M−1)IJF

I
µνF

Jµν +
1

8
Tr(∂µM∂µM−1)

]
. (B.6)

The ten-dimensional lowest-order effective action of the type-I string is

SI
10 =

∫ √
−G10

[
e−Φ (R + ∂µΦ∂µΦ)−

1

4
e−

Φ
2 F i

µνF
i,µν −

1

12
HµνρH

µνρ

]
. (B.7)

Doing the standard toroidal reduction to D dimensions, we obtain

SI
D =

∫
√
−g

{
e−φ

[
R + (∂φ)2 +

1

4
∂Gαβ∂G

αβ −
1

4
GαβF

A,α
µν FA,βµν

]
−

−
1

4
e−

φ
2G1/4

[
F̃ i
µνF̃

iµν + 2F̃ i
µαF̃

iµα
]
−

−
√
G

[
1

12
HµνρH

µνρ +
1

4
HµναH

µνα +
1

4
HµαβH

µαβ

]}
, (B.8)

where G stands for the determinant of the metric Gαβ and

F̃ i
µν = F i

µν + Y i
αF

A,α
µν , F̃ i

µα = ∂µY
i
α , F i

µν = ∂µA
i
ν − ∂νA

i
µ (B.9a)
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Cαβ ≡ Bαβ −
1

2
δijY

i
αY

j
β , Hµαβ = ∂µCαβ + δijY

i
α∂µY

j
β (B.9b)

Bµ,α ≡ B̂µα +BαβA
β
µ +

1

2
δijY

i
αA

j
µ , FB

α,µν = ∂µBα,ν − ∂νBα,µ (B.9c)

Hµνα = FB
α,µν − CαβF

A,β
µν − δijY

i
αF

j
µν , FA,α

µν = ∂µA
α
ν − ∂νA

α
µ (B.9d)

Bµν = B̂µν +
1

2

[
AαµBνα + δijA

i
µA

α
νY

j
α − (µ↔ ν)

]
− AαµA

β
νBαβ (B.9e)

Hµνρ = ∂µBνρ −
1

2

[
BµαF

A,α
νρ + AαµF

B
α,νρ + δijA

i
µF

j
νρ

]
+ cyclic (B.9f)

≡ ∂µBνρ −
1

2
AIµLIJF

J
νρ + cyclic .

Here we have extended the index i = 1, 2, · · · , 16 to I = 1, 2, · · · , 2d + 16 to incorporate

the 2d extra gauge fields Aαµ, Bα,µ coming from the metric and the antisymmetric tensor

respectively. The hat over the B in (B.9c), (B.9e) indicates the original components of

the ten-dimensional antisymmetric tensor. Furthermore

φ = Φ−
1

2
log(detG) . (B.10)

We will go to the Einstein frame g = e2φ/(D−2)gE to obtain

SI
D,E =

∫
√
−gE

[
R−

(∂φ)2

D − 2
−
e

(D−6)φ
D−2

12

√
GHµνρH

µνρ +
1

4
∂Gαβ∂G

αβ −
e
φ
2

2
G

1
4 F̃ i

µαF̃
iµα

−
1

4

√
GeφHµαβH

µαβ −
1

4
e
−2φ
D−2GαβF

A,α
µν FA,βµν

−
1

4
e

(D−6)φ
2(D−2)G1/4F̃ i

µνF̃
iµν −

1

4
e

(D−4)φ
(D−2)

√
GHµναH

µνα

]
. (B.11)

Define now in the type-I context

G̃αβ = (det G)−
1
4e−

φ
2 Gαβ (B.12a)

φ̃ =
6−D

4
φ+

2−D

8
log(det G) . (B.12b)

Then the type-I Einstein frame action becomes identical to the heterotic one. Thus, the

duality dictionary in D dimensions is

gE
′ = gE , Y I

α

′
= Y I

α , B′αβ = Bαβ , Aiµ
′
= Aiµ , B′µν = Bµν (B.13a)

G′αβ = (det G)−
1
4e−

φ
2 Gαβ , φ′ =

6−D

4
φ+

2−D

8
log(det G) (B.13b)

where primed indices refer to the heterotic side.

From now on we will set the Wilson lines to zero. In D = 9 we will parametrize the

metric Gαβ in terms of the circle length, G = R2. Then (B.13b) implies

R2
het =

R2
I

λI
, (B.14)
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where λI = eΦ/2 is the ten-dimensional type-I coupling constant that organizes the genus

expansion. In D = 8 we will use the T, U basis for the moduli Gαβ , Bαβ

Gαβ =
T2

U2

(
1 U1

U1 |U |2

)
, Bαβ = T1

(
0 1

−1 0

)
. (B.15)

Then

T1|het = T1|I , Uhet = UI , T2|het =
T2

λ

∣∣∣∣
I

. (B.16)

Finally, we note that in any dimension we have

G′αβ = e−Φ/2Gαβ . (B.17)

C Elliptic genera for general N = 4 ground states

We will consider here N = 4 heterotic ground states. The simplest case, which is con-

sidered in the text, is the one obtained from toroidal compactification of the O(32) ten-

dimensional heterotic string. There are, however, more general ground states with maxi-

mal supersymmetry once we are in less than ten dimensions. Such ground states can be

constructed as freely acting orbifolds of the toroidally compactified theory. In order not

to reduce the supersymmetry, the orbifold group must contain rotations that act only on

the (non-supersymmetric) right-movers and arbitrary lattice translations. Such N = 4

ground states have reduced rank and can contain current algebras with higher levels.

In all such ground states the one-loop corrections to the F 4 and R4 terms can be

obtained from

AD = t8

∫
F

d2τ

τ 2
2

τ
(10−D)/2
2 A(τ, τ̄ , FI , R) , (C.1)

where t8 is the standard tensor [30]. In the above formula, A is the elliptic genus of the

internal CFT, which has (c, c̄) = (15−3D/2, 26−D) in the presence of background gauge

fields and curvature. The left-moving internal CFT is free (toroidal). The elliptic genus

is defined as a trace in the internal CFT

A(τ, τ̄ , FI , R)|R=F=0 = Tr[(−1)F qL0−c/24q̄L̄0−c̄/24]R (C.2)

in the Ramond sector. In (C.1) we are supposed to keep the terms that are fourth order in

R,FI .
9 The elliptic genus obtains contributions only from ground states in the left-moving

(supersymmetric) sector. The only τ dependence comes from the lattice sum.

In order to calculate the dependence of the elliptic genus on the background fields

we have to calculate the appropriate integrated correlation functions of vertex operators.

The R dependence of the elliptic genus does not depend on the details of the N = 4

ground state (apart from the overall normalization). It was calculated in [45] with the

result
A(R, 0)

A(0, 0)
= exp

[
−
Ê2

48
tr

(
iR

2π

)2

−
∞∑
k=2

B2k

4k(2k!)
tr

(
iR

2π

)2k

E2k

]
, (C.3)

9The index I runs over all Abelian and non-Abelian factors of the gauge group.
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where B2k are the Bernoulli numbers.

The dependence on the field strengths can be obtained from the associated char-

acters of the right-moving affine algebra. Consider the characters χa(vi|τ) of the I-th

component of the gauge group GI , where a labels the integrable affine representations,

i = 1, 2, · · · , rank GI , and vi are the skew eigenvalues of FI/4π
2,

tr

(
iF

2π

)2

= 2(2πi)2
∑
i

v2
i , tr

(
iF

2π

)4

= 2(2πi)4
∑
i

v4
i . (C.4)

The characters transform homogeneously under the modular group. In particular (see

for example [65])

χa(vi/τ | − 1/τ) = eiπk
P
i v

2
i /τ
∑
b

Sab χ
b(vi|τ) , (C.5)

where k is the level (a positive integer) of the associated current algebra. To obtain the

associated traces we expand the characters as

χa(vi|τ) = χa(τ) +
(2πi)2

2!

(∑
i

v2
i

)
χa2(τ) +

(2πi)4

4!

(∑
i

v4
i

)
χa4(τ) +

+
(2πi)4

(2!)2

(∑
i

v2
i

)2

χa2,2(τ) +O(v6) .

(C.6)

The above transformations imply the following behaviour for the traces

χa
(
−

1

τ

)
=
∑
b

Sab χ
b(τ) , χa4

(
−

1

τ

)
= τ 4

∑
b

Sab χ
b
4(τ) (C.7a)

χa2

(
−

1

τ

)
=
∑
b

Sab

[
τ 2χb2(τ) +

k τ

2πi
χb(τ)

]
(C.7b)

χa2,2

(
−

1

τ

)
=
∑
b

Sab

[
τ 4χb2,2(τ) +

k τ 3

2πi
χb2(τ)−

k2 τ 2

8π2
χb(τ)

]
. (C.7c)

Thus, the F 2 and the (F 2)2 traces are not modular-covariant. Modifications by non-

holomorphic pieces are needed. These arise in the straightforward evaluation of the

thresholds by integrating the singular terms in the correlator of four currents on the

torus. Another way to see their presence without invoking the regularization prescription

is to compute them in an IR-regulated background where they come from the gravitational

back-reaction [49]. We will denote χ2 by Q2χ, χ4 by Q4χ and χ2,2 by [Q2]2χ. Then,

Q2χ→ Q2χ−
k

4πτ2
χ (C.8a)

[Q2]2χ→ [Q2]2χ−
k

4πτ2

Q2χ+
k2

8π2τ 2
2

χ . (C.8b)
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We also need ∫
d2z

τ2
〈J̄aI (z̄)J̄

b
I (0)〉 =

1

4
trI [T

aT b]Tr

[
Q2
I −

kI
4πτ2

]
(C.9a)

∫ 3∏
i=1

d2zi

τ2

〈J̄aI (z̄1)J̄
b
I (0)〉〈J̄cJ(z̄2)J̄

d
J(z̄3)〉 =

=
1

8
trI [T

aT b]trJ [T
cT d]Tr

[(
Q2
I −

kI

4πτ2

)(
Q2
J −

kJ

4πτ2

)]
, I 6= J (C.9b)

∫ 3∏
i=1

d2zi

τ2
〈J̄aI (z̄1)J̄

b
I (z̄2)J̄

c
I (z̄3)J̄

d
I (0)〉 =

=
1

2
trI [T

aT bT cT d]Tr[Q4
I ] +

1

48

(
trI [T

aT b]trI [T
cT d] + trI [T

aT c]trI [T
bT d]+

+trI [T
aT d]trI [T

bT c]
)
Tr

[
(Q2

I)
2 −

kI
4πτ2

Q2
I +

k2
I

8π2τ 2
2

]
, (C.9c)

where I labels the gauge-group factors, and T a are matrices in the adjoint of the gauge-

group factor GI .

Putting everything together we obtain

A(τ, R, FI)

A(τ, R, 0)
= 1 +

1

4

∑
I

tr

(
iFI

2π

)2

Tr

[
Q2
I −

kI

4πτ2

]

+
1

8

∑
I<J

tr

(
iFI
2π

)2

tr

(
iFJ
2π

)2

Tr

[(
Q2
I −

kI
4πτ2

)(
Q2
J −

kJ
4πτ2

)]
(C.10)

+
1

16

∑
I

tr

[(
iFI

2π

)2
]2

Tr

[
(Q2

I)
2 −

kI

4πτ2
Q2
I +

k2
I

8π2τ 2
2

]
+

1

2

∑
I

tr

(
iFI

2π

)4

Tr[Q4
I ] ,

where tr stands for the group trace and Tr stands for the (normalized) trace in the Hilbert

space relevant to the elliptic genus.

In ten dimensions there are two choices for the gauge group, O(32) and E8×E8 both

at level one. For the case of O(32)1 the elliptic genus was calculated in [45] with the result

AO(32)(τ, R, F ) = tr

(
iF

2π

)4

+
1

27 · 32 · 5

E3
4

η24
tr

(
iR

2π

)4

+

+
1

29 · 32

[
E3

4

η24
+
Ê2

2E
2
4

η24
− 2

Ê2E4E6

η24
− 27 · 32

]
×

×

(
tr

(
iF

2π

)2
)2

+
1

29 · 32

Ê2
2E

2
4

η24

(
tr

(
iR

2π

)2
)2

+

+
1

28 · 32

[
Ê2E4E6

η24
−
Ê2

2E
2
4

η24

]
tr

(
iR

2π

)2

tr

(
iF

2π

)2

, (C.11)
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while, for E8 × E8, a direct evaluation gives

AE8×E8(τ, R, F ) =

=
1

27 · 32 · 5

E3
4

η24
tr

(
iR

2π

)4

+
1

29 · 32

Ê2
2E

2
4

η24

(
tr

(
iR

2π

)2
)2

+

+
1

29 · 32

(
(Ê2

2E4 − 2Ê2E6 + E2
4)E4

η24

)(tr(iF1

2π

)2
)2

+

(
tr

(
iF2

2π

)2
)2
−

−
Ê2E4(Ê2E4 −E6)

28 · 32 η24
tr

(
iR

2π

)2
[
tr

(
iF1

2π

)2

+ tr

(
iF2

2π

)2
]

+

+
(Ê2E4 −E6)

2

28 · 32 η24
tr

(
iF1

2π

)2

tr

(
iF2

2π

)2

, (C.12)

where F1,2 are the field strengths of the first, respectively second E8.

Upon toroidal compactification to D dimensions the above formulæ have to be multi-

plied by the 10−D toroidal lattice sum.

D Properties of the (2,2) lattice

The (2,2) lattice sum can be written as

Γ2,2(T, U) =
∑

m1,m2,n1,n2∈Z

qp
2
l /2 q̄p

2
r/2 (D.1)

where

1

2
p2
r =
| −m1U +m2 + T (n1 + n2U)|2

4T2U2

,
1

2
p2
l =

1

2
p2
r +m1n1 +m2n2 . (D.2)

Define the following “momenta”

p = m2 + Tn1 + U(−m1 + Tn2) , q = m2 + Tn1 + Ū(−m1 + Tn2) . (D.3)

Then we can write the lattice sum as

Γ2,2(T, U) =
∑

e
2πiτ(~m·~n)−

πτ2
T2U2

|p|2
=
∑

e
2πiτ̄ (~m·~n)−

πτ2
T2U2

|q|2
. (D.4)

We also define the generalized lattice sums

〈pM1 p̄M2qN1 q̄N2〉 ≡
∑

pM1 p̄M2qN1 q̄N2e
2πiτ(~m·~n)−

πτ2
T2U2

|p|2
. (D.5)

In this notation, Γ2,2 = 〈1〉. Finally we define the (rescaled) covariant derivatives

Da
u = ∂u −

ia

u2

, Da
ū = ∂ū +

ia

u2

. (D.6)
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Then, we can derive the following identities

T (τ2Γ2,2(T, U)) = U(τ2Γ2,2(T, U)) = τ 2
2 ∂τ∂τ̄ (τ2Γ2,2(T, U)) (D.7)

with T ≡ T 2
2 ∂T∂T̄ . We also have

DN−1
U DN−2

U · · ·D0
U 〈1〉 =

(
πτ2

2iT2U
2
2

)N
〈p̄NqN〉 (D.8a)

DN−1
Ū

DN−2
Ū
· · ·D0

Ū 〈1〉 =

(
πτ2

−2iT2U
2
2

)N
〈pN q̄N 〉 (D.8b)

DN−1
T DN−2

T · · ·D0
T 〈1〉 =

(
πτ2

2iT 2
2U2

)N
〈p̄N q̄N〉 (D.8c)

DN−1
T̄

DN−2
T̄
· · ·D0

T̄ 〈1〉 =

(
πτ2

−2iT 2
2U2

)N
〈pNqN〉 (D.8d)

(DN−1
U DN−2

U · · ·D0
U) (DN−1

T DN−2
T · · ·D0

T ) (τ2〈1〉) =

(
iπ

2T 2
2U

2
2

)N
(τ 2

2∂τ )
N
(
τ2〈p̄

2N 〉
)

(D.8e)

(DN−1
U DN−2

U · · ·D0
U) (DN−1

T̄
DN−2
T̄
· · ·D0

T̄ ) (τ2〈1〉) =

(
iπ

2T 2
2U

2
2

)N
(τ 2

2 ∂τ̄ )
N
(
τ2〈q

2N〉
)

(D.8f)

(DN−1
Ū

DN−2
Ū
· · ·D0

Ū) (DN−1
T DN−2

T · · ·D0
T ) (τ2〈1〉) =

(
iπ

2T 2
2U

2
2

)N
(τ 2

2 ∂τ̄ )
N
(
τ2〈q̄

2N〉
)

(D.8g)

(DN−1
Ū

DN−2
Ū
· · ·D0

Ū) (DN−1
T̄

DN−2
T̄
· · ·D0

T̄ ) (τ2〈1〉) =

(
iπ

2T 2
2U

2
2

)N
(τ 2

2 ∂τ )
N
(
τ2〈p

2N〉
)
. (D.8h)

Also note that in the above

(τ 2
2 ∂τ̄ )

N = τ 2N
2 DN−1

τ̄ DN−2
τ̄ · · ·D0

τ̄ (D.9)

and finally we give the identity

∂τ̄ (τ
2∂τ̄ )

N DN
τ ΦN(τ) ∼ DN+1

τ̄ DN
τ ΦN(τ) = 0 . (D.10)

E One-loop threshold integrals

E.1 Calculation of one-loop threshold integrals

In this appendix we compute the following two families of fundamental domain integrals

Iν(T, U) =

∫
F

d2τ

τ2

(
Γ2,2(T, U)Êν

2 (τ)Φν(q)− c
(ν)
0

)
, (E.1a)

Iν(y) =

∫
F

d2τ

τ2

(
ΓS+2,2(y)Ê

ν
2 (τ)Φν(q)− d

(ν)
0

)
, S = 8, 16 , (E.1b)

where τ = τ1 + iτ2 is the complex modulus of the torus, q = e2πiτ , F is the fundamental
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domain of SL(2, Z) and ν is an arbitrary non-negative integer. For ν = 0, 1 these integrals

were computed in Ref. [66], which we will closely follow in notation and computational

method.10 In the case of the integral in (E.1b), we will first keep the results general for

all S, but be more specific in explicit expressions for the case S = 16 with the SO(32)

lattice, which is the one that has applications to the body of the paper.

(2, 2) case. We first present the calculation of (E.1a) in some detail. The integrand

involves the (2,2) lattice sum

Γ2,2(T, U) =
∑
pl,pr

qp
2
l /2q̄p

2
r/2 (E.2a)

=
1

τ2

∑
A∈Mat2×2

e−2πiTdetA exp

[
−
πT2

τ2U2

∣∣∣(1 U)A
(τ

1

)∣∣∣2] (E.2b)

p2
r =
| −m1U +m2 + T (n1 + n2U)|2

2T2U2

, p2
l − p

2
r = 2(m1n1 +m2n2) , (E.2c)

for which we use the second (Poisson resummed) form (E.2b) in the computations below.

Here Ê2 is defined as in (A.9), and Φν is a modular form of weight −2ν, which is holo-

morphic everywhere except for a first-order pole at infinity; its Laurent series is given

by

Φν(q) =
∞∑

n=−1

cn q
n . (E.3)

We also define, for any non-negative integer s, the power series

Es
2(q)Φν(q) =

∞∑
n=−1

c(s)
n qn , (E.4)

so that in particular c
(0)
n = cn and the second term in (E.1a) proportional to c

(ν)
0 is chosen

as to cancel the IR-divergent part of the first term.

To evaluate this integral we use the method of orbits [51], splitting up the integral in

the sum of three terms, Iν =
∑3

i=1 I
(i)
ν , corresponding to the trivial, non-degenerate and

degenerate orbits, respectively, for which we outline the computations below.

Trivial orbit. In this case A = 0 in (E.2b) and the result is known [45] to be

I(1)
ν = T2

∫
F

d2τ

τ 2
2

Êν
2 (τ)Φν(q) =

π T2

3(ν + 1)
[Eν+1

2 (q)Φν(q)]|coeff. of q0

=
πT2

3(ν + 1)
[c0 − 24(ν + 1)c−1] .

(E.5)

Non-degenerate orbit. Here, the representative matrices are

A0 =

(
k j

0 p

)
, 0 ≤ j < k , p 6= 0 (E.6)

10Integrals of this type have also been studied in Ref. [67].
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and the integral unfolds over the double cover of the upper half-plane. Expanding Êν
2 we

have

I(2)
ν =

ν∑
s=0

(ν
s

)(
−

3

π

)s
I(2)
ν,s , (E.7)

where

I(2)
ν,s = 2T2

∞∑
n=−1

∑
j≤0<k
p6=0

∫ ∞
−∞

dτ1

∫ ∞
0

dτ2

τ 2+s
2

e−2πiTkpe
−
πT2
τ2U2

|kτ+j+pU |2
c(ν−s)
n e2πiτn . (E.8)

We first do the Gaussian integral over τ1, with the result:

I(2)
ν,s = 2

√
T2U2

∞∑
n=−1

∑
j≤0<k
p6=0

∫ ∞
0

dτ2
1

τ
3/2+s
2

1

k
e−2πiTkpe

−
πT2
τ2U2

(kτ2+pU2)2

×

× e
− 2iπ

k
(j+pU1)n−πn2 τ2U2

T2k
2 c(ν−s)
n e−2πτ2n .

(E.9)

Then we do the j summation, using the identity

∞∑
n=−1

k−1∑
j=0

e−
2πinj
k f(n) =

∞∑
l=−1

k−1∑
b=0

k−1∑
j=0

e−
2πibj
k f(kl+ b) =

∞∑
l=−1

k−1∑
b=0

kδb,0f(kl+ b) = k

∞∑
l=−1

f(kl) ,

(E.10)

after which we use
∑

p 6=0 g(p) =
∑

p>0[g(−p) + g(p)] and we find

I(2)
ν,s = 4Re

√
T2U2

∞∑
l=−1

∞∑
k,p=1

∫ ∞
0

dτ2
1

τ
3/2+s
2

e2πi(Tk+U1l)pe
−
πT2
τ2U2

(kτ2−pU2)2

e
−πτ2(2lk+

U2l
2

T2
)
c

(ν−s)
kl .

(E.11)

To do the τ2 integral we use∫ ∞
0

dx
1

x1−λ
e−cx−b/x = 2

(
b

c

)λ/2
Kλ(2

√
bc) , Re b,Re c > 0 , (E.12)

where the Bessel function Kλ is given by

Kn+1/2(x) =

√
π

2x
e−x

n∑
r=0

(n+ r)!

r!(n− r)!(2x)r
, K−n(x) = Kn(x) . (E.13)

If the moduli of the torus are in the fundamental chamber T2 > U2, we then obtain

the result

I(2)
ν,s = 4Re

1

(T2U2)s

∞∑
l=−1

∞∑
k,p=1

(qkT q
l
U )p

s∑
r=0

(s+ r)!

r!(s− r)!(4π)r
(T2k + U2l)

s−r 1

ps+r+1
c

(ν−s)
kl (E.14)

where we have defined

qT = e2πiT , qU = e2πiU . (E.15)
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On the other hand, when U2 > T2, we find the same result with T and U interchanged.

We will generally assume that the moduli are in the fundamental chamber, unless specified

otherwise.

To further simplify the expression (E.14), we evaluate the p-sum by using the poly-

logarithm functions defined in (A.20), giving

I(2)
ν,s = 4Re

1

(T2U2)s

∞∑
l=−1

∑
k>0

s∑
r=0

(s+ r)!

r!(s− r)!(4π)r
(T2k + U2l)

s−rLis+r+1(q
k
T q

l
U)c

(ν−s)
kl . (E.16)

Finally, using the definition (A.19) of the combined polylogarithm function L(s), we

conclude that the total contribution of the non-degenerate orbits to the integral is given

by

I(2)
ν = 4Re

ν∑
s=0

(ν
s

)( −3

πT2U2

)s ∞∑
l=−1

∞∑
k=1

L(s)(Tk + Ul)c
(ν−s)
kl . (E.17)

Degenerate orbit. For the degenerate orbits the representative matrices are

A0 =

(
0 j

0 p

)
, (j, p) 6= (0, 0) , (E.18)

where j, p run over both positive and negative integers to account for the double covering,

and the integration extends over the strip.

In this case we need to compute

I(3)
ν =

ν∑
s=0

(ν
s

)(
−

3

π

)s
I(3)
ν,s , (E.19)

where

I(3)
ν,s =

∫ 1/2

−1/2

dτ1

∫ ∞
0

dτ2

τ 2+s
2

T2

∞∑
n=−1

∑
(j,p)6=(0,0)

e
−
πT2
τ2U2

|j+pU |2
c(ν−s)
n e2πiτn − c(ν)

0 δs,0δ(τ ∈ F)τ2

 .
(E.20)

For s = 0 we need to regularize the integral, and following [51] we multiply the

integrand by the regulator (1 − e−N/τ2) in this case, taking the limit N → ∞ after

evaluation of the integral. To keep the computation below uniform for all s, we use the

fact that the above prescription effectively amounts to omitting the constant term in the

integrand and replacing in the end∑
p=1

2

p
= 2ζ(1)→ −[log T2U2 +K] , K ≡ log

8πe1−γE

3
√

3
(E.21)

where γE is the Euler–Mascheroni constant.

So we focus on the first term in (E.20) and, after performing the trivial τ1 integration

and subsequently the standard τ2 integration, we arrive at

I(3)
ν,s = c

(ν−s)
0 T2s!

(
U2

πT2

)s+1 ∑
(j,p)6=(0,0)

1

|j + pU |2(1+s)
= (E.22a)
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= c
(ν−s)
0 T2s!

(
U2

πT2

)s+1

×

×

(
2
∞∑
j=1

1

j2(1+s)
+

∞∑
j=−∞

∑
p 6=0

1

[(j + pU1)2 + (pU2)2](1+s)

)
. (E.22b)

For the first term in (E.22b) we use the standard identity

∞∑
j=1

1

j2m
= ζ(2m) , ζ(2m) = (−)m+1 22m−1π2m

(2m)!
B2m , (E.23)

where Bm are the Bernoulli numbers. For the explicit examples in the text, the relevant

values are B2 = 1/6, B4 = −1/30 and B6 = 1/42.

To evaluate the second term in (E.22b) we use the identities

∞∑
j=−∞

1

(j +B)2 + C2
=

iπ

2C
[cot π(B + iC)− cotπ(B − iC)] , (E.24a)

∞∑
p=1

1

ps
qpU

1− qpU
=

∞∑
l=1

Lis(q
l
U) , (E.24b)

(
1

U2

∂

∂U2

)s
1

U2
Lim(qlU ) =

(−)s(2π)s

U2ν+1
2

s∑
r=0

(s+ r)!

r!(s− r)!(4π)r
(U2l)

s−rLim+r−s(q
l
U ) , m ≥ s .

(E.24c)

The identity (E.24c) may be derived by recursion, using in particular ∂
∂U2

Lis(q
l
U ) =

−2πlLis−1(q
l
U). Then we can rewrite

∞∑
j=−∞

∑
p 6=0

1

[(j + pU1)2 + (pU2)2](1+s)
=

=
∑
p 6=0

(−1)s

s!

1

p2s

(
1

2U2

∂

∂U2

)s ∞∑
j=−∞

1

(j + pU1)2 + (pU2)2

=
(−1)sπ

s!

(
1

2U2

∂

∂U2

)s ∞∑
p=1

1

p2s

2

U2

1

p

[
qpU

1− qpU
+

q̄pU
1− q̄pU

+ 1

]

=
(−1)sπ

2ss!

(
1

U2

∂

∂U2

)s(
1

U2
4Re

∞∑
l=1

Li2s+1(q
l
U) +

2

U2
ζ(2s+ 1)

)

= 4Re
πs+1

U2s+1
2

∞∑
l=1

Ls(Ul) +
2π(2s)!

(s!)24s
ζ(2s+ 1)

U2s+1
2

. (E.25)

Here we have used (E.24a) and some rearrangement in the second step; (E.24b) in the

third step; while the last step uses (E.24c), along with the definition of L(s) in (A.19).
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Inserting the results (E.25), (E.23), (E.22b) in (E.22a), we can write the total result

for (E.20) as

I(3)
ν =4Re

ν∑
s=0

(ν
s

)( −3

πT2U2

)s ∞∑
l=1

L(s)(Ul)c
(ν−s)
0 − c(ν)

0 [log T2U2 +K] +
πU2

3
c

(ν)
0

+
ν∑
s=1

c
(ν−s)
0

(ν
s

){4π(12)ss!B2s+2

(2s+ 2)!

Us+1
2

T s2
+ 2

(2s)!

s!

(
3

4π2T2U2

)s
ζ(2s+ 1)

}
,

(E.26)

which completes the calculation of the degenerate orbit.

Total result. Adding the three expressions (E.5), (E.17) and (E.26), we obtain our final

result for the fundamental domain integral in (E.1a):

Iν(T, U) = 4Re
ν∑
s=0

(ν
s

)( −3

πT2U2

)s∑
k,l

′
L(s)(Tk + Ul)c

(ν−s)
kl

− c(ν)
0 [log T2U2 +K] +

πT2

3(ν + 1)
[c

(0)
0 − 24(ν + 1)c

(0)
−1] +

πU2

3
c

(ν)
0

+

ν∑
s=1

c
(ν−s)
0

(ν
s

){4π(12)ss!B2s+2

(2s+ 2)!

Us+1
2

T s2
+ 2

(2s)!

s!

(
−3

4π2T2U2

)s
ζ(2s+ 1)

}
,

(E.27)

where ∑
k,l

′
≡

∞∑
k,l=0

(k,l)6=(0,0)

+ ( )|(k,l)=(1,−1) (E.28)

and L(s) is the combined polylogarithm function defined in (A.19).

This expression is valid in the fundamental chamber T2 > U2, while for U2 > T2 we

obtain the same result with T and U interchanged. For the special cases ν = 0 and 1,

with Φ0 = E3
4/η

24 and Φ1 = E4E6/η
24, respectively, the expression (E.27) agrees with

that obtained in the appendix of [66].

(S + 2, 2) case. We next evaluate the integrals in (E.1b), which involve the (S + 2, 2)

lattice sum:

ΓS+2,2(y) =
∑
pl,pr

qp
2
l /2q̄p

2
r/2 , (E.29)

where our notations and conventions are as follows. The (S + 2, 2) lattice is obtained

by an SO(S + 2, 2) rotation of some standard lattice, which we take to be of the form

ΓS,0⊕Γ2,2. Here, ΓS,0 is the S = 8 or 16-dimensional, even self-dual Euclidean lattice, i.e.

either the E8 root lattice or the E8 × E8 root lattice or the Spin(32)/Z2 weight lattice.

For Γ2,2 we use the conventions of the (2,2) case discussed above. A general lattice vector

is denoted by

` ∈ ΓS+2,2 : ` = (r̄, ~n, ~m) , r̄ ∈ ΓS,0 , (~n, ~m) ∈ Γ2,2 (E.30)
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so that barred vectors are the components in ΓS,0. The complex moduli y are parametrized

as in (A.26) so that

y = (ȳ, T, U) , (y, y) = ȳ · ȳ − 2TU , (y2, y2) = ȳ2 · ȳ2 − 2T2U2 , (E.31)

with ȳ an S-dimensional complex vector. The subscript “2” on the moduli denotes the

imaginary part as usual, and we have the restrictions that U2 > 0 and (y2, y2) < 0. In

these coordinates, the left- and right-moving components of p ∈ ΓS+2,2 are given by

p2
r =

1

−(y2, y2)

∣∣∣∣r̄ · ȳ +m1U + n1T −m2 −
1

2
n2(y, y)

∣∣∣∣2 (E.32a)

p2
l − p

2
r = r̄ · r̄ − 2m1n1 − 2m2n2 . (E.32b)

After a Poisson resummation in m1, m2, the lattice sum (E.29) takes the alternate

form

ΓS+2,2(y) =
−(y2, y2)

2τ2U2

∑
r̄∈ΓS,0

∑
A

q
1
2
r̄·r̄eG(A,τ) (E.33)

where

G(A, τ) =
π(y2, y2)

2(U2)2τ2
|A|2 − 2πiT detA +

π

U2

(
r̄ · ȳÃ − r̄ · ȳ∗A

)
−
πn2

2U2

(
ȳ · ȳÃ − ȳ∗ · ȳ∗A

)
+
iπȳ2 · ȳ2

(U2)2
(n1 + n2U

∗)A
(E.34a)

A =

(
n1 m1

n2 m2

)
, A = (1 U)A

(
τ

1

)
, Ã = (1 U∗)A

(
τ

1

)
. (E.34b)

For completeness we also give an alternative form of the expression (E.33):

ΓS+2,2(G,B, Y ) =

√
detG

τ2

∑
~m,~n

e
− π
τ2

(mI+nIτ)(G+B)IJ (mJ+nJ τ̄)×

×
1

2

∑
a,b=0,1

S∏
i=1

e−iπ[nIY iI Y
i
Jm

J+bnIY iI ]ϑ
[
a+2nIY iI
b+2mIY iI

]
,

(E.35)

where the ϑ-function is defined in (A.1).

Here, the connection between the real moduli G,B, Y in the form (E.35) and the

complex moduli y = (ȳ, T, U) in (E.33) is as follows:

G =
−(y2, y2)

2U2
2

(
1 U1

U1 |U |2

)
, B12 = T1 −

ȳ1 · ȳ2

2U2
(E.36a)

yi = (y1 + iy2)
i = −Y i

2 + UY i
1 . (E.36b)

To check the equivalence between the expressions (E.33) and (E.35), one uses eq. (A.1)

and the relations in (E.36).
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The modular properties under τ are most easily derived from (E.33) or (E.35) and

we find that ΓS+2,2 is of weight S/2. The lattice sum is also properly invariant under

the O(S + 2, 2, Z) transformations (A.25) of the moduli. For modular invariance of the

integrand in (E.1b), the function Φν transforms with weight −S/2 − 2ν, and we assume

the same expansion as in (E.3), (E.4) for this function.

It turns out that since the lattice is even self-dual, the contribution to (E.33) from

two matrices A that are related by a modular transformation is again, as in the (2,2)

case, given by a modular transformation on τ . As a consequence we can use the method

of orbits as above. We omit the details of the calculations, which are similar to the ones

given for the (2,2) case, and generalize those in [66], but only give the final result.

To write the total result we introduce the following notation [66]. The triplet r =

(r̄,−l,−k) is positive if

k > 0 or k = 0, l > 0 or k = l = 0, r̄ > 0 (E.37)

and we use the definition

d(s)(r) ≡ c
(s)

− 1
2

(r,r)
, (r, r) = r̄ · r̄ − 2kl , (E.38)

where the coefficients c
(s)
n are as in (E.4). We will also use the functions in (E.38) with

argument r̄ instead of r, meaning that k = l = 0. For example, the coefficient of the

second term in (E.1b) (which subtracts the divergent part) is

d
(ν)
0 =

∑
r̄

r̄·ȳ=0

d(ν)(r̄) . (E.39)

We define the product (r; y) as

(r; y) =


r̄ · ȳ1 + lU1 + kT1 + i |r̄ · ȳ2 + lU2 + kT2| for k > 0

r̄ · ȳ + lU −
[
r̄·ȳ2

U2

]
U for k = 0, r̄ ≥ 0

r̄ · ȳ + lU +
[
− r̄·ȳ2

U2

]
U for k = 0, r̄ < 0 ,

(E.40)

where [x] is the greatest integer smaller than or equal to x.

Then, we have the following result for the threshold including Wilson lines

Iν(y) = 4Re
ν∑
s=0

(ν
s

)( 6

π(y2, y2)

)s∑
r>0

′
L(s) ((r; y))d(ν−s)(r)

+ d
(ν)
0 (− log(−(y2, y2))−K)−

(y2, y2)

2U2

π

3(ν + 1)
[Eν+1

2 χΦν ]|q0

+

ν∑
s=1

d
(ν−s)
0

(ν
s

) 2(2s)!

s!

(
3

2π2(y2, y2)

)s
ζ(2s+ 1)

+ 2Re

ν∑
s=0

(ν
s

)( 6

π(y2, y2)

)s
U2s+1

2 s!

πs+1

∑
r̄

Li2s+2

(
e2πir̄·ȳ2/U2

)
d(ν−s)(r̄) ,

(E.41)
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where L(s) is defined as in (A.19), and K is given in (E.21). The prime on the sum over

r > 0 indicates that terms with k = l = 0 and r̄ · ȳ = 0 for generic values of the moduli

are omitted.

Further simplifications of this expression occur when the moduli are in the (general-

ized) fundamental Weyl chamber [66]

0 <
r̄ · ȳ2

U2

< 1 , for r̄ > 0 , r̄ · r̄ ≤ 2 (E.42a)

0 < U2 < T2 , (E.42b)

which means that (r; y) = (r, y) = r̄ · ȳ + lU + kT for all r such that −1
2
(r, r) ≥ −1.

For generic moduli we also have r̄ · ȳ = 0, which implies r̄ = 0, and since cn<1 = 0 the

r̄ sum in the last line of (E.41) restricts to the subset r̄2 = 2 only. Hence, we have in the

generalized fundamental Weyl chamber the simplified expression:

Iν(y) = 4Re

ν∑
s=0

(ν
s

)( 6

π(y2, y2)

)s∑
r>0

′
L(s) ((r, y)) c

(ν−s)
kl−r̄2/2

+ c
(ν)
0 (− log(−(y2, y2))−K)−

(y2, y2)

2U2

π

3(ν + 1)
[Eν+1

2 χΦν ]|q0

+
ν∑
s=0

c
(ν−s)
0

(ν
s

){4π(−24)ss!B2s+2

(2s+ 2)!

U2s+1
2

(y2, y2)s

+ϑ(s ≥ 1)
2(2s)!

s!

(
3

2π2(y2, y2)

)s
ζ(2s+ 1)

}
+ 2Re

ν∑
s=0

(ν
s

)( 6

π(y2, y2)

)s
U2s+1

2 s!

πs+1

∑
r̄2=2

Li2s+2

(
e2πir̄·ȳ2/U2

)
c

(ν−s)
−1 (E.43)

where we also used that Lis(1) = ζ(s) and eq. (E.23).

Simplification of rational terms. For the calculation (and existence) of the generalized

prepotentials in Appendix E.2, it is necessary to simplify the rational terms, which are

defined as follows

Irat
ν (y) = −

(y2, y2)

2U2

π

3(ν + 1)
[Eν+1

2 χΦν ]|q0 +

ν∑
s=0

c
(ν−s)
0

(ν
s

) 4π(−24)ss!B2s+2

(2s+ 2)!

U2s+1
2

(y2, y2)s

+2Re

ν∑
s=0

(ν
s

)( 6

π(y2, y2)

)s
U2s+1

2 s!

πs+1

∑
r̄2=2

Li2s+2

(
e2πir̄·ȳ2/U2

)
c

(ν−s)
−1 . (E.44)

In the fundamental Weyl chamber we can use the following identities (relevant for ν ≤ 2)

on the even polylogarithms,

ReLi2(e
2πix) = π2

(
1

6
− |x|+ x2

)
(E.45a)

ReLi4(e
2πix) = π4

(
1

90
−

1

3
x2 +

2

3
|x|3 −

1

3
x4

)
(E.45b)
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ReLi6(e
2πix) = π6

(
1

945
−

1

45
x2 +

1

9
x4 −

2

15
|x|5 +

2

45
x6

)
, (E.45c)

which hold for |x| < 1. To simplify the expression in (E.44) for ν ≤ 2, we will also use the

fact that χ(q) = 1 + 2Dq + O(q2), where D is the number of positive roots (for E8 this

is 120, while for E8 × E8 or SO(32) this is 240). Moreover, we use the explicit functions

Φν , which are

S = 8 : Φ0 =
E2

4

η24
, Φ1 =

E6

η24
, Φ2 =

E4

η24
(E.46a)

S = 16 : Φ0 =
E4

η24
, Φ1 = non-existent , Φ2 =

1

η24
. (E.46b)

We will also need to define the following completely symmetric Lie algebra tensors∑
r̄2=2
r̄>0

ri1ri2 . . . rin = α
(n)
i1i2...in

. (E.47)

In particular, by definition, α
(1)
i = 2ρi, where ρ is the Weyl vector, while it is also known

for any simply-laced group (we take r̄2 = 2) that α
(2)
ij = h̃δij where h̃ is the dual Coxeter

number (equal to 30 for E8 and SO(32)). We also have for E8 and SO(32) the identities∑
ijkl

α
(4)
ijklv

ivjvkvl =

{
18(v̄ · v̄)2 E8

6(v̄ · v̄)2 + 24
∑

i v
4
i SO(32)

(E.48a)

∑
ijklmn

α
(6)
ijklmnv

ivjvkvlvmvn =

{
15(v̄ · v̄)3 E8

30(v̄ · v̄)
∑

i v
4
i SO(32)

(E.48b)

The tensors in (E.47) satisfy the contraction property

α
(n)
i1i2...in

ηin−1in = 2α
(n−2)
i1i2...in−2

. (E.49)

Then, after some algebra, we find the following results (for ν ≤ 2): in eq. (E.44)

there appear a priori terms of the form
(yi2)2ν+2

U2(y2,y2)ν
; however, these vanish because of non-

trivial root identities. The vanishing of these terms is essential for the integrability of the

thresholds in terms of (generalized) prepotentials as discussed in Appendix E.2.

The final simplification for the rational terms can be summarized in terms of a set of

symmetric tensors as follows:

Irat
ν (y) = −

8π

(y2, y2)ν
d(ν,ν)
a1...a2ν+1

ya1
2 · · · y

a2ν+1

2 . (E.50)

In particular, for the case ν = 0 we have the explicit result

S = 8, 16 : d(0,0)
a = (ρ̄,−30,−31) ≡ −ηabρ

b . (E.51)

As pointed out in Ref. [66], for the case S = 8 we have ρa = −ηabd
(0)
b = −(ρ̄E8 , 31, 30),

which is the Weyl vector of the E10 KM algebra. For the case ν = 1 and S = 8 the result
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agrees with [66], and will not be given explicitly here. Finally, we give the corresponding

expressions for the case ν = 2. For E8 we have

E8 : Irat
2 (y) = −

8π

(y2, y2)2

(
[ρ̄ · ȳ − 30T2 − 31U2](y2, y2)

2 +

+ [8U3
2 − 168U2

2T2 − 144U2T
2
2 − 4α

(3)
i1i2i3

yi12 y
i2
2 y

i3
2 ](y2, y2)−

−
48

5
U5

2 + 48U4
2T2 − 288U3

2T
2
2 − 192U2

2T
3
2 +

+
24

5
α

(5)
i1i2i3i4i5

yi12 y
i2
2 y

i3
2 y

i4
2 y

i5
2

)
(E.52)

where i = 1, . . . , 8, while for E8 ×E8 we find

E8 ×E8 : Irat
2 (y)=−

8π

(y2, y2)2

(
[ρ̄ · ȳ − 30T2 − 31U2](y2, y2)

2

+ [8U3
2 − 168U2

2T2 − 144U2T
2
2 − 4α

(3)
i1i2i3

yi12 y
i2
2 y

i3
2 ](y2, y2)

−
48

5
U5

2 + 48U4
2T2 − 288U3

2T
2
2 − 192U2

2T
3
2

+ 144(U2 + T2)(ȳ2 · ȳ2)1(ȳ2 · ȳ2)2 +
24

5
α

(5)
i1i2i3i4i5

yi12 y
i2
2 y

i3
2 y

i4
2 y

i5
2

)
, (E.53)

where now i = 1, . . . , 16, and (ȳ2 · ȳ2)1 and (ȳ2 · ȳ2)2 refer to the two E8 factors respectively.

For SO(32) we find

SO(32) : Irat
2 (y) = −

8π

(y2, y2)2

(
[ρ̄ · ȳ + 18T2 + 17U2](y2, y2)

2

+ [8U3
2 + 24U2

2T2 + 48U2T
2
2 − 4α

(3)
i1i2i3

yi12 y
i2
2 y

i3
2 ](y2, y2)

−
48

5
U5

2 + 48U4
2T2 − 96U3

2T
2
2 − 96(U2 + T2)

∑
i

(yi2)
4

+
24

5
α

(5)
i1i2i3i4i5

yi12 y
i2
2 y

i3
2 y

i4
2 y

i5
2

)
. (E.54)

We also note that the corresponding tensors satisfy the identities

d
(2,2)
abcdeη

bcηde =

{
−24

5
ρa S = 8

8
3
ρa S = 16

(E.55)

where ρa is the generalized Weyl vector defined in (E.51).

E.2 Generalized prepotentials

(2, 2) case. Using identities (A.22) and (A.17), it can be shown that the result (E.27)

for the one-loop threshold integral (E.1a) can be written in terms of ν “prepotentials”

f(ν,s)(T, U) in the following way

Iν(T, U) = −c(ν)
0 [logT2U2 +K]− 2 log |f̃(ν,0)(T, U)|2 + Re

ν∑
s=1

(ν
s

)
Ds
TD

s
Uf(ν,s)(T, U) ,

(E.56)
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where

f̃(ν,0)(T, U) = q
[c

(0)
0 /24−(ν+1)c

(0)
−1]/(ν+1)

T q
c
(ν)
0 /24
U

ν∏
m=0

∏
k,l

′
(1− qkT q

l
U)cν(m;k,l) (E.57a)

cν(m; k, l) ≡
( ν
m

) (−3)m

(m+ 1)!
(−4kl)mc

(ν−m)
kl (E.57b)

f(ν,s≥1)(T, U) = 4
ν−s∑
m=0

(
ν − s

m

)
s!(2s+ 1)(−3)s+m

(2s+m+ 1)!

∑
kl

′
(−4kl)mLi2s+1(q

k
T q

l
U )c

(ν−s−m)
kl

− c(ν−s)
0 4iπ2s+1 (12)ss!B2s+2

(2s)!(2s+ 2)!
U2s+1 + c

(ν−s)
0 2

s!(−3)s

(2s)!
ζ(2s+ 1) . (E.57c)

The function f(ν,s) is an (almost) modular function of T and U , of weight −2s, and

the appropriate covariant derivatives are defined in Appendix A. In particular, under

modular transformations the functions f(ν,s) transform with an additive piece. In the

case of N = 2 threshold integrals, ν = 1 and f(1,1) is the one-loop prepotential of the

N = 2 effective supergravity. Writing the integral in this form suggests that in N = 1

supergravity in eight dimensions, the four-derivative terms can be written in terms of

holomorphic prepotentials.

(S+2, 2) case. Using the identities (A.33), (A.36) and (A.37), it can be shown that the

result (E.43) of the thresholds (E.1b) can also be rewritten in terms of ν “prepotentials”,

whose form in the generalized fundamental chamber is as follows

Iν(y) = −c(ν)
0 [log−(y2, y2) +K]− 2 log |f̃(ν,0)(y)|

2 + Re

ν∑
s=1

(ν
s

)
sf(ν,s)(y) , (E.58)

where the second-order operator is defined in eq. (A.28) and

f̃(ν,0)(y) = e2πi(σν ,y)
ν∏

m=0

∏
r>0

′
(1− e2πi(r,y))cν(m,r) (E.59a)

σaν ≡ −
(S/2 + 1)!

(S/2 + ν + 1)!

(2ν + 1)!

4νν!
ηabd

(ν,0)
b (E.59b)

cν(m, r) ≡
( ν
m

) (S/2 + 1)!

(S/2 +m+ 1)!
(−6r2)mc

(ν−m)

−r2/2 (E.59c)

f(ν,s≥1)(y) = 4
ν−s∑
m=0

(
ν − s

m

)
(S/2 + s)!(S/2 + 2s+ 1)

(S/2 + 2s+m+ 1)!
(−3)s+m ×

×
∑
r>0

′
(2r2)mLi2s+1(e

2πi(r,y))c
(ν−s−m)

−r2/2 +

+8π2s+1 (S/2 + s)!(S/2 + 2s+ 1)

(S/2 + ν + s+ 1)!

(−2)s

4ν
(2ν + 1)!

ν!(2s + 1)!
d(ν,s)
a1...a2s+1

ya1 · · · ya2s+1 +

+2(−3)s
(S/2 + s)!

(S/2 + 2s)!
ζ(2s+ 1)c

(ν−s)
0 , (E.59d)
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where we have used the simplified form (E.50) of the rational terms in the generalized

fundamental Weyl chamber and used the recursive definition

d(ν,s−1)
a1...a2s−1

= d(ν,s)
a1...a2s+1

ηa2sa2s+1 , 1 ≤ s ≤ ν . (E.60)

For the case ν = 1, S = 8, we have checked the agreement with the one-loop prepotential

given in [66]. We note here again that the above expressions have only been proved for

ν ≤ 2. For higher ν, these expressions remain true if the conjectured relations (A.33),

(A.36), (A.37) and the form (E.50) for the rational terms remain valid. We strongly

believe this to be the case, and also note that the expressions in (E.59) correctly reduce

to those in (E.57) for S = 0.

F Large T2 expansion of heterotic one-loop integrals

The main results (E.27) and (E.43) of Appendix E are the general form of the elliptic-

genus contributions to the one-loop free energy of the heterotic string compactified on

a two-torus, without and with Wilson lines. In this appendix we compute the large T2

expansion of these two expressions, by re-expanding the result in a double power series in

the variables T2 and qT = e2πiT . Using heterotic/type-I duality the resulting expansion can

be decomposed into the perturbative part (powers of T2 only) and the non-perturbative

part (powers of qT ) from the type-I point of view. We will use this terminology below, in

accordance with the physical interpretation discussed in the text.

(2, 2) case. Our aim is to use the large T2 expansion to rewrite the expression in (E.27)

in the form

Iν(T, U) = I(p)
ν (T2, U) + I(n.p)

ν (T2, qT , U) + I(d)(T2) , (F.1)

where I
(p)
ν and I

(n.p)
ν stand for the perturbative and non-perturbative parts, respectively,

and I(d)(T2) collects logarithmically divergent and constant pieces.

In fact, by examining the separate contributions I
(i=1,2,3)
ν in (E.5), (E.17) and (E.26)

of the trivial, non-degenerate and degenerate orbits, respectively, it is not difficult to see

that

I(p)
ν (T2, U) + I(d)(T2) = I(1)

ν + I(3)
ν (F.2a)

I(n.p)
ν (T2, qT , U) = I(2)

ν , (F.2b)

so that the perturbative contributions are included in the trivial and degenerate orbit,

while the non-degenerate orbits generate non-perturbative terms.

In further detail, it follows from (E.5) and (E.26) that the perturbative terms are

I(p)
ν (T2, U) =

πT2

3(ν + 1)
[c

(0)
0 − 24(ν + 1)c

(0)
−1] +

ν∑
s=0

(ν
s

)( −3

πT2

)s
Y(s)(U)c

(ν−s)
0 , (F.3)
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where the functions Y(s) are given by

Y(0)(U) = 4Re
∞∑
l=1

L(0)(Ul)− logU2 +
πU2

3
= − logU2|η(U)|4 (F.4a)

Y(s≥1)(U) = 4Re
1

Us
2

∞∑
l=1

L(s)(Ul) +
(−1)s(4π)1+ss!B2s+2

(2s+ 2)!
Us+1

2 + 2
(2s)!

s!

(
1

4πU2

)s
ζ(2s+ 1) .

(F.4b)

Note that modular invariance in the T and U moduli of the total integral (E.1a) implies

that these functions are modular-invariant in the U modulus. For Y(0) this fact corre-

sponds to the usual modular transformation of the η-function. For s ≥ 1, however, this

fact implies highly non-trivial modular properties of the polylogarithms, which in some

sense generalize those of the η-function. Similar identities were noted in [66].

For the logarithmically divergent/constant pieces, we easily read off

I(d)(T2) = −c(ν)
0 [log T2 +K] . (F.5)

Using the intermediate result (E.22a) in the degenerate orbit , we can also write down

the following alternative form of the perturbative terms:

I(p)
ν (T2, U) =

πT2

3(ν + 1)
[c

(0)
0 − 24(ν + 1)c

(0)
−1]− I

(d)(T2)

+U2

ν∑
s=0

(ν
s

)(−3U2

π2T2

)s
c

(ν−s)
0

∑
(j,p)6=(0,0)

1

|j + pU |2(1+s)
, (F.6)

which expresses the contributions at order 1/T s2 as a sum over inverse powers 1/P 2(1+s)

of the internal momenta of the type-I string.

Moving on to the non-perturbative terms, we start with the expression (E.17) for the

non-degenerate orbit and rewrite it as follows. First, we substitute the explicit form of

L(s) in (A.19), yielding

I(n.p)
ν = 4Re

ν∑
s=0

(
−3

πT2U2

)s s∑
r=0

(ν
s

) (s+ r)!

r!(s− r)!(4π)r

∑
k,l
k 6=0

′
(T2k + U2l)

s−rLis+r+1(q
k
T q

l
U)c

(ν−s)
kl

(F.7a)

= 4Re
ν∑
s=0

s∑
r=0

s−r∑
m=0

(−3)s

4r

(ν
s

) (s+ r)!

r!(s− r)!

(
s− r

m

)
1

(πT2)s−m
1

(πU2)r+m
×

×
∑
l,k
k 6=0

′
∞∑
p=1

kmls−r−m
1

ps+r+1
qkpT q

lp
U c

(ν−s)
kl , (F.7b)

where in the second step we have also used the summed form of the polylogarithms and

expanded the (T2k + U2l)
r−s factor.
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Next we do the l summation, by rewriting

∞∑
l=−1

ls−r−mqlpU c
(ν−s)
kl =

∞∑
l=−1

ls−r−mqklpU/kc
ν−s
kl

=
∞∑

l=−1

1

ks−r−m
[qu′∂qu′ ]

s−r−mqklu′c
(ν−s)
kl

=

k−1∑
j=0

1

ks−r−m+1
[qu′∂qu′ ]

s−r−m(Eν−s
2 Φν)(u

′ +
j

k
)

=

k−1∑
j=0

1

ks−r−m+1
[qu∂qu ]

s−r−m(Eν−s
2 Φν)(u)

(F.8)

where we have introduced, in the second step, u′ = pU/k and, in the last step,

u =
pU + j

k
, (F.9)

which is identified with the complex modulus of the world-volume of the D1-brane. In

the third step we also used the identity

∞∑
l=−1

qklUCkl =
1

k

k−1∑
j=0

F (U +
j

k
) , F (U) =

∞∑
n=−1

Cnq
n
U (F.10)

and the definition (A.9).

Substituting the result (F.8) in (F.7b) we obtain

I(n.p)
ν = 4Re

ν∑
s=0

s∑
r=0

s−r∑
m=0

(−3)s

4r

(ν
s

) (s+ r)!

r!(s− r)!

(
s− r

m

)
1

(πT2)s−m
×

×
∞∑

k,p=1

k−1∑
j=0

1

(πpU2/k)r+m
1

(kp)s−m+1
qkpT [qu∂qu ]

s−r−m(Eν−s
2 Φν)(u)

(F.11a)

= 4Re

ν∑
s=0

(ν
s

)( 3

2πT2

)s s∑
r=0

ν−s∑
m=0

(−)s+m3m4r

2s
s!

r!

(
ν − s

m

)(
2s+m− r

s+m

)
×

×
∞∑

k,p=1

k−1∑
j=0

1

(πu2)s+m−r
1

(kp)s+1
qkpT [qu∂qu ]

r(Eν−s−m
2 Φν)(u)

(F.11b)

where, in the second step, we used u2 = pU2/k, the summation identity

ν∑
s=0

s∑
r=0

s−r∑
m=0

f(s, r,m) =

ν∑
s=0

s∑
r=0

ν−s∑
m=0

f(s+m, s− r,m) , (F.12)

and performed some regrouping of terms.
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Finally, we use the identity (A.17) to obtain the interesting result that the non-

perturbative part of the integral over the elliptic genus,

I(n.p)
ν (T2, qT , U) =

∫
F

d2τ

τ2

(
Γ2,2(T, U)Êν

2 (τ)Φν(q)− c
(ν)
0

)
|non−pert.

= 4Re

ν∑
s=0

(ν
s

)( 3

2πT2

)s ∞∑
p,k=1

1

(kp)s+1
qkpT

k−1∑
j=0

(DsÊν−s
2 Φν)

(
pU + j

k

)
,

(F.13)

depends again on the elliptic genus and covariant derivatives thereof.

We continue to simplify this by noting that (F.13) has the form

I(n.p)
ν (T2, qT , U) = 4Re

ν∑
s=0

(ν
s

)( 3

2πT2

)s ∞∑
N=1

1

N s
qNT g(s,N)(U) (F.14a)

g(s,N)(U) ≡
1

N

∞∑
p,k=1
pk=N

k−1∑
j=0

(DsÊν−s
2 Φν)

(
pU + j

k

)
, (F.14b)

where the functions g(s,N)(U) entering at the N -th instanton contribution qNT are modular

functions of U , given the fact that Φν are modular functions of weight −2ν. In terms of

the Hecke operator (4.14), we have g(s,N)(U) = HN [DsÊν−s
2 Φν ](U).

Although for a given instanton number N (and any s) the function g(s,N) is modular-

invariant in U , the sum in this expression is reducible when N = nm2 for some m > 1,

in the sense that the function can then be split up into more than one part, each of

which is separately modular-invariant. Here we will do the reduction using the modular

invariance of the result on U . An algebraic explanation can also be given, by looking

at the classifications of the mappings between the lattice characterizing the instanton

world-sheet and the torus.

When the sum cannot be further reduced into separate modular-invariants, we will call

the resulting sum an irreducible modular-invariant. In particular, when N = nm2 = pk,

there will be one or more triplets of numbers (p, k, j), which have a greatest common

divisor g.c.d.(p, k, j) = m > 1, and it is not difficult to see that the corresponding subset

of terms have already appeared as the modular-invariant g(s,n), i.e. at lower instanton

number n < N . Hence, the irreducible modular invariants are characterized by the n-

instanton modular function

G(s,n)(U) ≡
1

n

∞∑
p,k=1
pk=n

k−1∑
j=0

δ(g.c.d.(p, k, j) = 1)(DsÊν−s
2 Φν)

(
pU + j

k

)
, (F.15)

which is the minimal modular-invariant completion of (DsÊν−s
2 Φν)(nU), in that all terms

in the sum of (F.15) are necessary and sufficient to make the entire function G(s,n)(U)

modular-invariant.
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Using the definition (F.15) in (F.13) we can rearrange the non-perturbative contribu-

tions as follows:

I(n.p)
ν (T2, qT , U) = 4Re

ν∑
s=0

(ν
s

)( 3

2πT2

)s ∞∑
n=1

∞∑
m=1

1

(nm2)s+1
qnm

2

T ×

×
∞∑

p,k=1
pk=n

k−1∑
j=0

δ(g.c.d.(p, k, j) = 1)(DsÊν−s
2 Φν)(

pU + j

k
) (F.16)

= 4Re
ν∑
s=0

(ν
s

)( 3

2πT2

)s ∞∑
n=1

1

ns
G(s,n)(U)

∞∑
m=1

1

m2(s+1)
(qnT )m

2

.

We finally write the result as

I(n.p)
ν (T2, qT , U) = 4Re

ν∑
s=0

(ν
s

)( 3

2πT2

)s ∞∑
N=1

1

N s
G(s,N)(U)Θ(s)(q

N
T ) , (F.17)

where we have introduced the function

Θ(s)(q) =

∞∑
m=1

1

m2(s+1)
qm

2

(F.18)

and we recall that G(s,N) are the irreducible modular-invariants defined in (F.15).

The sum over the integer m in the above formulæ is interpreted as a sum of multiple

D1-branes wrapped around the torus. We can argue that from the type-I point of view

they must be included, otherwise the SL(2, Z)T invariance will be broken. This can be

seen most easily for the TrF 4 threshold, where the result is given by log(T2|η(T )|4). De-

composing this threshold as above, it is obvious that on the one hand, the logarithmic

divergence plus SL(2, Z)T invariance uniquely specifies that only the η-function can ap-

pear. If on the other hand we drop in the instanton expansion of the threshold the terms

corresponding to the multiply wrapped branes, then the SL(2, Z)T symmetry will be

broken. We conclude that SL(2, Z)T symmetry forces the inclusion of multiply wrapped

D-instantons.

Similarly, we have computed the large T2 limit of the generalized prepotentials in

(E.57), where, for uniformity with f(ν,s≥1), we will use f(ν,0) ≡ −4 log f̃(ν,0) below. They

exhibit a structure similar to that in (F.1):

f(ν,s)(T, U) = f
(p)
(ν,s)(U) + f

(n.p)
(ν,s) (U, qT ) + f

(d)
(ν,s)(T ) , (F.19)

where we have separated perturbative, non-perturbative and divergent parts. Here, the

divergent and perturbative parts are given by

f
(d)
(ν,s)(T ) = −δs,0

[c
(0)
0 − 24(ν + 1)c

(0)
−1]

6(ν + 1)
2πiT (F.20a)

f
(p)
(ν,0)(U) = −

c
(ν)
0

6
2πiU −

ν∑
r=0

4
(ν
r

) (−3)r

(r + 1)!

∞∑
l=1

log(1− qlU)c
(ν−r)
0 (F.20b)
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f
(p)
(ν,s≥1)(U) =

ν−s∑
r=0

(
ν − s

r

)
4s!

2s+ 1

(2s+ r + 1)!
(−3)s+r

∞∑
l=1

Li2s+1(q
l
U)c

(ν−s−r)
0

− c(ν−s)
0 4iπ2s+1 (12)ss!B2s+2

(2s)!(2s+ 2)!
U2s+1 + c

(ν−s)
0 2

s!(−3)s

(2s)!
ζ(2s+ 1)

(F.20c)

and we note that the functions f
(p)
(ν,s) are almost modular functions of weight −2s, trans-

forming with additional pieces that are annihilated by the covariant derivatives.

For the non-perturbative part we find the instanton expansion

f
(n.p)
(ν,s) (U, qT ) =

∞∑
n=1

qNT f
(N)
(ν,s)(U) (F.21a)

f
(N)
(ν,s)(U) ≡

1

N

∞∑
k,p=1
kp=N

k−1∑
j=0

1

p2s
F(ν,s)

(
pU + j

k

)
. (F.21b)

Here F(ν,s)(u) is given by

F(ν,s)(u) = 4s!(−3)s
ν−s∑
m=0

(
ν − s

m

)
2s+ 1

(2s+m+ 1)!
[12qu∂qu ]

m(Eν−s−m
2 Φν)(u) . (F.22)

We conjecture that this is a holomorphic modular function in u of weight −2s, which

implies that the function is of the form

F(ν,s)(u) =
4s!(2s+ 1)(−6)ν

(ν + s+ 1)!2s

∞∑
p,q,r=0

p+2q+3r=ν−s

bν,sp,q,rE
r
6E

q
4D̂

pΦν(u) , (F.23)

where D̂ is the holomorphic covariant derivative in (A.15) and the coefficients bν,sp,q,r are

computable in principle by comparison with (F.22) and use of eqs. (A.14a)–(A.15).

We have checked the conjecture for ν − s ≤ 3, obtaining the coefficients

bν,ν0,0,0 = 1 , bν,ν−1
1,0,0 = 1 , bν,ν−2

2,0,0 = 1 , bν,ν−2
0,1,0 = −

(ν − 1)

18
(F.24a)

bν,ν−3
3,0,0 = 1 , bν,ν−3

1,1,0 = −
(3ν − 5)

18
, bν,ν−3

0,0,1 = −
(2ν − 3)

27
. (F.24b)

Moreover, additional evidence in support of the conjecture is the fact that when

F(ν,s)(u) is of weight −2s in u, it follows that the function f
(N)
(ν,s)(U) in (F.21b) is of

weight −2s in U as it should. In particular, this function can be rewritten in the form

f
(N)
(ν,s)(U) = HN [F(ν,s)](U) where HN is the Hecke operator defined in (4.14).
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(S + 2, 2) case. In this case, for brevity, we restrict ourselves to the non-perturbative

contributions, which clearly come from the k > 0 sum in the first term of (E.41) only.

Moreover, in this case with non-zero Wilson lines, we need to employ the following loop

counting parameter,

V ≡ G1/2 , G1/2 = T2 −
1

2U2

ȳ2 · ȳ2 . (F.25)

We omit the details of the resulting calculation, in which we closely follow the steps taken

in the (2,2) case. We list, however, some of the main identities that are used: the analogue

of (F.10) is here:

∞∑
l=−1

q
kl− 1

2
r̄·r̄

U Ckl− 1
2
r̄·r̄ =

1

k

k−1∑
j=0

F

(
U +

j

k

)
eπir̄·r̄j/k , F (U) =

∞∑
n=−1

Cnq
n
U . (F.26)

We also need to define as in (F.9) the complex modulus u of the world-volume of the

D1-brane, along with the induced D1-brane Wilson lines,

w̄ = pȳ . (F.27)

Finally, we now need the expansion formula (A.31), which involves the Jacobi covariant

derivative D̃ of (A.24) and the affine characters χ(ȳ|t) in (A.29).

The final result is

I(n.p)
ν (V, qT , ȳ, U) =

∫
F

d2τ

τ2

(
ΓS+2,2(y)Ê

ν
2 (τ)Φν(q)− d

(ν)
0

)
|non−pert.

=4Re

ν∑
s=0

(ν
s

)( 3

2πV

)s ∞∑
p,k=1

1

(kp)s+1
qkpT

k−1∑
j=0

(D̃sÊν−s
2 χ(w̄)Φν)(u) .

(F.28)

Since we used the conjectured identity (A.31), we emphasize here again that this has

only been explicitly checked up to ν = 2, but we note the correct reduction for zero Wilson

lines to the result (F.13), as well as the fact that (F.28) has the correct transformation

properties. We strongly believe the above result to be generally valid.

We also give the large T2 expansion of the non-perturbative part of the generalized

prepotentials in (E.59). This is exactly of the form (F.21), but with F(ν,s)(u)→ F(ν,s)(w̄|u)

given by

F(ν,s)(w̄|u) = 4(S/2 + s)!(−3)s
ν−s∑
m=0

(
ν − s

m

)
(S/2 + 2s+ 1)

(S/2 + 2s+m+ 1)!
× (F.29)

× χ(w̄|u)[12qu∂qu ]
m(Eν−s−m

2 Φν)(u) .

We conjecture that this is a holomorphic Jacobi form of type (−2s, 1) in (u, w̄), which

implies that the function is of the form

F(ν,s)(w̄|u) =
4(S/2 + s)!(S/2 + 2s+ 1)(−6)ν

(S/2 + ν + s+ 1)!2s

∞∑
p,q,r=0

p+2q+3r=ν−s

bν,sp,q,rχ(w̄|u)Er
6E

q
4D̂

pΦν(u) ,

(F.30)
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where D̂ is the holomorphic covariant derivative in (A.15) and the coefficients bν,sp,q,r are

obtained from (F.24) using the replacement ν → S/4 + ν.

G Recursion relations and prepotentials

Let us consider the following integrals:

Ψs =

∫
F

d2τ

τ2
[Γ2,2(T, U)As − Cδs,0] , (G.1)

where s = 0, 1, 2, · · · , νmax and As are the relative elliptic genera defined in (4.12); C is

the coefficient of the q0 term in A0 given in (4.11), and Ψs is real. The relatives of the

elliptic genus satisfy the following recursion relations:

τ 2
2 ∂τ∂τ̄As =

s(s+ 1)

4
As +

3

2
(s+ 1)As+1 , (G.2)

with Aνmax+1 = 0. They also satisfy

(τ 2
2∂τ̄ )

νmax+1As = 0 , s = 0, 1, · · · , νmax , (G.3)

which will be useful as well.

We first analyze the cases νmax = 0, 1, 2 separately and then describe the general case.

νmax = 0 case. Using (G.2), (G.3), (D.7), (D.8g) on the integral representation and

doing some integration by parts, keeping boundary terms, we obtain the following equa-

tions:

TΨ0 = UΨ0 =
C

4
, ∂T∂ŪΨ0 = 0 . (G.4)

The most general solution to the above equations is

Ψ0 = −C log(T2U2) + [f(T, U) + cc] , (G.5)

which concludes the analysis.

νmax = 1 case. Using (G.2), (G.3), (D.7), (D.8g) we obtain the following equations:

TΨ0 =
C

4
+

3

2
Ψ1

(
T −

1

2

)
Ψ1 = 0 (G.6a)

D1
TD

0
TD

1
ŪD

0
ŪΨ0 = D1

TD
0
TD

1
ŪD

0
ŪΨ0 = 0 (G.6b)

as well as those that are obtained by T ↔ U .

The second equation in (G.6a) for Ψ1 has as general solution

Ψ∗1 =
1

3

[
DTDUf1(T, U) +DTDŪ f̃1(T, Ū)

]
+ cc (G.7)
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while (G.6b) implies that f̃1(T, Ū) can be set to zero. Thus we find that

Ψ1 =
1

3
DTDUf1(T, U) + cc . (G.8)

Then the general solution to the equations for Ψ0 is

Ψ0 = −C log(T2U2) + [f0(T, U) +DTDUf1(T, U) + cc] . (G.9)

νmax = 2 case. Using the above, we can now derive the following recursion relations:

TΨ0 =
3

2
Ψ1 +

C0

4
(G.10a)

TΨ1 =
1

2
Ψ1 + 3Ψ2 (G.10b)

TΨ2 =
3

2
Ψ2 (G.10c)

(D2
TD

1
TD

0
T )(D2

ŪD
1
ŪD

0
Ū)Ψs = 0 , s = 0, 1, 2 (G.10d)

and similarly for U . The simplest equation to solve is (G.10c). Its general solution is

Ψ2 =
1

3

(
D2
TD

2
Uf2(T, U) +D2

TD
2
Ū f̃2(T, Ū) + cc

)
, (G.11)

where as usual D2 = D−2D−4. The kernel of D2
T are functions of the form A(T̄ , U, Ū)(T −

T̄ )4 +B(T̄ , U, Ū)(T − T̄ )3. Using (G.10d) on the general solution (G.11) we obtain

D3
ŪD

3
TΨ2 ∼ ∂5

Ū∂
5
T f̃2(T, Ū) = 0 . (G.12)

Thus, f̃2 must satisfy this equation, so it is a polynomial of degree at most 4 in T, Ū . In

this case the function vanishes, when acted on by the covariant derivatives in (G.11), so,

without loss of generality, it can be taken to be zero. Thus, we have shown that

Ψ2 =
1

3

(
D2
TD

2
Uf2(T, U) + cc

)
. (G.13)

Let us now solve the next equation, (G.10b), which reads(
T −

1

2

)
Ψ1 = D2

TD
2
Uf2(T, U) + cc . (G.14)

The general solution is

Ψ1 = D2
TD

2
Uf2(T, U) +

1

3

(
DTDUf1(T, U) +DTDŪ f̃1(T, Ū)

)
+ cc . (G.15)

Moreover, (G.19) implies that f̃1(T, Ū) must be set to zero so that

Ψ1 = D2
TD

2
Uf2(T, U) +

1

3
DTDUf1(T, U) + cc . (G.16)
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Finally, the general solution to (G.10a) is

Ψ0 = −C0 log(T2U2) +
[
D2
TD

2
Uf2(T, U) +DTDUf1(T, U) + f0(T, U) + cc

]
. (G.17)

The general νmax case is now transparent. We have the following differential equations(
T −

s(s+ 1)

4

)
Ψs =

3

2
(s+ 1)Ψs+1 +

C

4
δs,0 (G.18)

and

(Dνmax

Ū
Dνmax−1
Ū

· · ·D0
Ū) (Dνmax

T Dνmax−1
T · · ·D0

T ) Ψs = 0 , s = 0, 1, · · · , νmax . (G.19)

The general solution is

Ψs = −Cδs,0 log(T2U2) +
νmax∑
ν=s

(ν + s)!

6s(ν − s)!s!
[Dν

TD
ν
Ufν(T, U) + cc] , (G.20)

which establishes the existence of generalized holomorphic prepotentials.

H Heterotic threshold integrals for general toroidal compactifi-

cation

We wish to compute the integrals relevant for the heterotic thresholds in toroidal com-

pactifications,

Iν(G,B) =

∫
F

d2τ τ
d/2−2
2 Γd,d(G,B)Êν

2 (τ)Φν(q) . (H.1)

The integrand involves the (d, d) lattice sum

Γd,d(G,B) =
∑
mi,ni

qp
2
l /2q̄p

2
r/2 , p2

l,r = pil,rGijp
j
l,r (H.2a)

pil =
1
√

2
(G−1(m+(G−B)n)i , pir =

1
√

2
(G−1(m−(G+B)n)i , i = 1 . . . d , (H.2b)

where G and B are the d-dimensional metric and antisymmetric tensor of the d-torus

respectively. The integral is IR-divergent and can be regulated by removing the massless

contribution. For the function Φν we assume the same expansion as in (E.4).

For the computations and result described below, it will be useful to introduce the

pull back of the G and B field

ĜIJ = M i
IGijM

j
J , B̂IJ = M i

IBijM
j
J , I, J = 1, 2 (H.3a)

M i
I = (ni, mi) , (H.3b)

and the corresponding induced Kähler form and complex structure

T (m,n) = T1 + iT2 = −B̂12 + i

√
Ĝ11Ĝ22 − Ĝ2

12

U (m,n) = U1 + iU2 =

(
−Ĝ12 + i

√
Ĝ11Ĝ22 − Ĝ2

12

)
/Ĝ11 .

(H.4)
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Below, we omit the superscripts (m,n) on these induced moduli, for simplicity. Then, we

may write the lattice sum after a Poisson resummation on mi in the form (8.2), which

can be recast as

Γd,d(G,B) =
1

τ
d/2
2

√
G

∑
A∈Matd×2

e2πiT̄ exp[−
πT2

τ2U2

|τ − Ū |2] (H.5a)

AT = M =

(
n1 n2 . . . nd
m1 m2 . . . md

)
, (H.5b)

where T, U depend on the entries of A through the definitions in (H.3), (H.4). Note also

that we used here the 2× d matrix M defined in (H.3b) and that its transpose A = MT

coincides with the matrix A in (E.2b) for d = 2. In particular, SL(2, Z) transformations

on τ act on the right of A as SL(2, Z) transformations on the lattice. Hence, we can use

the method of orbits to evaluate the integral.

The orbits of SL(2, Z) in the set of 2× d matrices with integer entries are as follows:

trivial orbit : AT = 0

degenerate orbit : AT =

(
0 0 · · · 0

m1 m2 · · · md

)
, (m1, m2, · · · , md) 6= (0, · · · , 0)

non-degenerate orbit : AT =

(
n1 · · · nk 0 · · · 0

m1 . . . mk mk+1 · · · md

)
1 ≤ k < d , nk > mk ≥ 0, (mk+1, · · · , md) 6= (0, · · · , 0)

The stabilizer group in each of these three cases is the same as for the d = 2 case,

so again we split up the integral into three separate parts, for which we give the results

below. Here, we will denote the degenerate and non-degenerate orbits by
∑′

m and
∑

m,n
′.

Trivial orbit. The result is identical to the one given in (E.5).

Non-degenerate orbit. Performing first the Gaussian τ1 integration and subsequently using

(E.12), (E.13) to evaluate the τ2 integration, we find

I(2)
ν = 2

ν∑
s=0

(ν
s

)∑
m,n

′
√
G

T2

(
−3

πT2U2

)s
qT

∞∑
l=−1

s∑
r=0

(s+ r)!

r!(s− r)!(4π)r
(T2 + U2l)

s−rqlUc
(ν−s)
l .

(H.6)

Using the summation identity (F.12) and the covariant derivative identity (A.17a), it is

not difficult to see that this can be re-expressed in terms of the original function, as

I(2)
ν = 2

ν∑
s=0

(ν
s

)∑
m,n

′
√
G

T2

(
3

2πT2

)s
qT (DsÊν−s

2 Φν)(U) , (H.7)

where we remind the reader again that the induced moduli T, U defined in (H.4) are

m,n-dependent.
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Degenerate orbit. In this case we need to regulate the IR divergence. Since we do not

need the exact regulated result for this paper, we confine ourselves here to giving the

unregulated result for the degenerate orbit

I(3)
ν '

ν∑
s=0

c
(ν−s)
0

(ν
s

)
s!
∑
m

′√
G

(
−3

π

)s(
U2

πT2

)s+1
1

|U |2(1+s)
, (H.8)

where T2|U |2/U2 = mGm since n = 0.
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